Главная - Наука - Биология
Пышнов Владимир - Из истории летательных аппаратов Скачать книгу Вся книга на одной странице (значительно увеличивает продолжительность загрузки) Всего страниц: 67 Размер файла: 296 Кб Страницы: «« « 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 » »» При полете с выключенным двигателем мы отбрасываем тягу винта и добавляем его сопротивление, что дает DCx0=0,03, и тогда получим Вообще говоря, можно было бы вместо формул для nх дать график. Таким образом, мы имеем два уравнения: одно для радиуса кривизны -- простое, и для уровня энергии -- дифференциальное. Кроме того, вспомогательные связи: hэ=h+hк; ds= rdq; dh=ds sinq. За текущую координату может быть выбран путь s или угол поворота касательной к траектории q. Производя расчет движения, пользуясь дифференциальным уравнением, выбираем шаг расчета Ds или Dq; первый -- на прямолинейных участках, а на криволинейных участках удобнее брать Dq, так как мы всегда будем знать среднее значение угла q. Численное интегрирование усложняется необходимостью делать последовательные приближения или брать очень малые значения шага. Работа упрощается, если возможна экстраполяция средних значений величин, входящих в формулы. Приняв некоторый шаг для угла наклона траектории Dq, мы получим следующие формулы: В очередном интервале расчета мы знаем q, выбираем nу и вынуждены экстраполировать величину hк. ср; если после выполнения расчета hк. ср окажется иным, мы должны повторить расчет. Чтобы улучшить экстраполяцию, следует в процессе расчета строить графики hэ и h пo s и рядом с ними траекторию так, чтобы масштабы были одинаковы. На рис. 10 и 11 показаны результаты расчета петли для самолета "Ньюпор-4" применительно к условиям выполнения ее П. Н. Нестеровым. За исходные условия был взят горизонтальный полет на высоте 900 м при скорости 90 км/час, что давало hк= 32 и начальный уровень энергии 932 м. Затем происходил переход в пикирование под углом 60o, которое продолжалось до момента достижения самолетом высоты 650 м с неработающим двигателем. Благодаря действию сопротивления воздуха, которое непрерывно возрастало, падал и уровень энергии, так что, когда высота стала равной 650 м, уровень энергии оказался равным 785 м и hк=135 м, или скорость ~ 185 км/час. При этой скорости могла бы быть получена максимальная перегрузка nу=135/18,5=7,3. Начинать петлю нужно было достаточно осторожно. Дальнейший расчет производился то интервалам Dq=30o. Когда самолет начинал выходить из пикирования, сопротивление настолько возрастало, что, несмотря на включение двигателя, уровень энергии продолжал падать, а кинетическая высота некоторое время оставалась почти постоянной. Когда же самолет стал описывать первую четверть петли, величина hк стала быстро уменьшаться как из-за увеличения h, так и вследствие уменьшения hэ. Только после прохождения вертикального положения падение уровня энергии прекратилось, но hк продолжало падать и дошло до значения hк =10, когда максимальная перегрузка могла иметь величину, равную лишь примерно 0,5. Таким образом, в верхней точке петли летчика прижимало к сиденью с силой, равной 30-40% от силы веса. Во второй части петли hк стало увеличиваться, но не очень сильно, так как двигатель был опять выключен и уровень энергии стал понижаться. Рис. 10. Схема расчета петли Нестерова для самолета "Ньюпор-4" энергетическим методом По графику, приведенному на рис. 10, можно получить значение hк в любой точке петли и затем найти скорость по выражению V=4,4 hк1/2. Разделив интервалы пути на средние значения скорости, можно найти интервалы времени и затем определить время совершения петли. От начального горизонтального участка до конечного оно оказалось равным около 10 сек. На рис. 11 дана общая схема пикирования, петли и последующего спирального спуска с, креном около 30о. Сопоставив ее с известной схемой, составленной самим П. Н. Нестеровым, мы можем увидеть весьма большое сходство между ними. Рис. 11. Схема снижения, петли и спирального спуска, полученная путем расчета применительно к условиям выполнения первой петли П. Н. Нестеровым Высота петли оказалась равной 90 м, что соответствует диаметру виража с очень большим углом крена, из чего и исходил П. Н. Нестеров. Только форма петли оказалась не окружностью, а фигурой, которую можно получить, если взять проволочное кольцо нужного диаметра и, разрезав его в нижней точке, сдвинуть концы, как бы затягивая петлю. Тогда в нижней части кривизна уменьшится, а в верхней увеличится. При совершении петли основной вопрос заключается в правильном выборе начальной скорости. Перед началом петли самолет должен иметь запас кинетической энергии, определяемый высотой hк.нач. Высота петли равна утроенному-учетверенному значению hк.н, соответствующему горизонтальному полету на наивыгоднейшей скорости, Dh=D=(3,5-4,0)hк.н, где hк.н=0, 82G/(S Cун). Кроме того, при выполнении петли происходит изменение уровня энергии от действия тяги и лобового сопротивления. Это изменение можно определить следующим образом. Длина пути полупетли будет равна Среднее значение перегрузки по пути петли nу~2,3; угол атаки находится в районе максимального качества. Тогда снижение уровня энергии за полупетлю составит Когда самолет окажется в верхней части петли, должна оставаться некоторая перегрузка -- не менее ny=0,3-0,4, для чего необходим запас кинетической энергии, равный hк.кон ~(0,3-0,4) hк.н. В итоге получим Этот приближенный расчет hк. нач очень близок к тому, что было получено при выполнении петли. Чем больше P/G, т. е. чем больше тяговооруженность самолета, тем легче выполнять петлю и тем меньше может быть начальная скорость. Тяговооруженность самолета, на котором летал П. Н. Нестеров, была невысока, и перед петлей потребовался основательный разгон путем пикирования. Мы можем только удивляться тому, насколько правильно задумал П. Н. Нестеров выполнить петлю -- после пикирования около 300 м. Будь разгон более слабым, самолет завис бы в верхней части петли, и тогда Страницы: «« « 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 » »» |
Последнее поступление книг:
Нинул Анатолий Сергеевич - Оптимизация целевых функций. Аналитика. Численные методы. Планирование эксперимента.
(Добавлено: 2011-02-24 16:42:44) Нинул Анатолий Сергеевич - Тензорная тригонометрия. Теория и приложения. (Добавлено: 2011-02-24 16:39:38) Коллектив авторов - Журнал Радио 2006 №9 (Добавлено: 2010-11-08 19:19:32) Коллектив авторов - Журнал Радио 2009 №1 (Добавлено: 2010-11-05 01:35:35) Вильковский М.Б. - Социология архитектуры (Добавлено: 2010-03-01 14:28:36) Бетанели Гванета - Гитарная бахиана. Авторская серия «ПОЗНАВАТЕЛЬНОЕ» (Добавлено: 2010-02-06 19:45:20) |