Главная - Справочная литература - Словари
Ивин А.А. - Словарь по логике Скачать книгу Вся книга на одной странице (значительно увеличивает продолжительность загрузки) Всего страниц: 44 Размер файла: 889 Кб Страницы: « 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 » »» Характерная особенность А.Б. заключается в том, что в ней отсутствуют коэффициенты и показатели степеней. Сумма двух А [13] равна А: АEА=А, а не 2А, как в обычной алгебре. Точно так же и произведение двух A равно A: АCА=А, а не A2. Важным законом А. Б. является принцип двойственности, согласно которому если в некотором справедливом равенстве мы заменим все вхождения E на C и C на E, 1 на 0 и 0 на 1, то получим равенство, двойственное первому и также справедливое. Примерами двойственных равенств являются приведенные выше аксиомы. А.Б. широко применяется при проектировании и проверке электрических схем, в которых используются реле, работающие по принципу "да - нет", при программировании и проектировании ЭВМ, в операциях с переключателями, сигналами, схемами. В современной математической логике этот раздел значительно усовершенствован и разрабатывается как теория булевых алгебр, в том числе как алгебра множеств, алгебра высказываний и т. п. В области традиционной логики соотношения А. Б. часто используются для иллюстрации и прояснения отношений между объемами понятий. АЛГОРИТМ (АЛГОРИФМ) (от Algorithmi - латинизированная форма имени выдающегося среднеазиатского ученого Аль-Хорезми) - конечный набор правил, позволяющих чисто механически решать любую конкретную задачу из некоторого класса однотипных задач. Примерами простейших А. могут служить А. вычитания, сложения, умножения и деления целых чисел в арифметике с десятичной системой счисления. Осуществление алгоритмического процесса может быть передано машине, которая благодаря своему быстродействию способна решать задачи, недоступные человеку. Возможность передать машине осуществление алгоритмических процедур стимулировала создание математической теории алгоритмов, в которой понятие А. было уточнено с помощью таких понятий, как "рекурсивная функция", "машина Тьюринга", "нормальный А." и т. п. АЛОГИЗМ (от греч. а - не, logos - разум) - ход мысли, нарушающий какие-то законы и правила логики и поэтому всегда содержащий в себе логическую ошибку. Если ошибка допущена непреднамеренно, то перед нами паралогизм; если же ошибка допущена с определенной целью, то мы столкнулись с софизмом. АМФИБОЛИЯ (от греч. amphibolia - двусмысленность, двойственность) - логическая ошибка, в основе которой лежит двусмысленность языковых выражений. Напр.: "Шуба - русское слово, но шуба греет, следовательно, некоторые русские слова греют". Здесь [14] слово "шуба" употреблено в разных смыслах, поэтому и получился абсурдный вывод. АНАЛИЗ И СИНТЕЗ. А. (от греч. analysis - разложение) - разделение объекта на составные части, стороны, свойства. С. (от греч. synthesis - соединение) - объединение полученных в результате А. частей объектов, их сторон или свойств в единое целое. А. и С. используются как в мыслительной, так и в практической, напр. экспериментальной, деятельности. Уже на ступени чувственного познания мы разлагаем явления на отдельные стороны и свойства, выделяя их форму, цвет, величину, составные части и т. п. Процедуры А. и С. являются необходимым элементом всякого научного познания и обычно образуют его начальный этап, на котором происходит переход от общего, нерасчлененного описания изучаемых объектов к выявлению их строения, состава и отдельных свойств. В различных науках используются специфические способы А. и С. АНАЛИТИЧЕСКИЕ И СИНТЕТИЧЕСКИЕ СУЖДЕНИЯ (в логике). А. с. - суждения, истинность которых устанавливается без обращения к действительности посредством логико-семантического анализа их компонентов. С. с. - суждения, истинность которых устанавливается только в процессе их сопоставления с той реальностью, о которой они говорят. Впервые в ясной форме разделение суждений на А. и С. было осуществлено немецким философом И. Кантом (1724-1804). А. с. Кант называл такое суждение, предикат которого уже входит в содержание субъекта и, таким образом, ничего не добавляет к тому, что мы знали о субъекте. Напр., суждение "Всякий холостяк неженат" является аналитическим, т. к. признак "быть неженатым" уже мыслится в содержании понятия "холостяк". "Всякое тело протяженно", "Москвичи живут в Москве" - все это А. с. Синтетическим же, согласно Канту, является такое суждение, предикат которого добавляет что-то новое к содержанию субъекта, напр. "Алмаз горюч", "Тихий океан - самый большой из океанов Земли" и т. п. Считается, что только С. с. выражают новое знание, А. с. представляют собой тавтологии, не содержащие никакой информации. Современная логика расширила понятие А.С., включив в число таких суждений и сложные суждения, истинность которых можно установить лишь на основе логических правил, не обращаясь к реальности. Напр., если нам дано суждение "а --> а", то нам не нужно обращаться к действительности, чтобы узнать, истинно или ложно суждение "а", - в любом случае данная импликация будет истинной. Следовательно, это А. с. [15] Различие между А. и С. с. не является строгим и четким, ибо наши понятия в процессе развития познания изменяют свое содержание, включают в него новые признаки, а это приводит к тому, что какие-то С. с. становятся А.с. Напр., когда-то суждение "Все тигры полосаты" было С. с. и несло в себе новую информацию о тиграх. Но сейчас понятие "тигр", кажется, уже включило в свое содержание признак полосатости. Скорее всего мы затруднимся назвать тигром животное, во всем похожее на тигра, но лишенное характерных полос на шкуре. Следовательно, это суждение стало А. с. АНАЛОГИЯ (от греч. analogia - соответствие) - сходство между предметами, явлениями и т. д. Умозаключение по А. (или просто А.) - индуктивное умозаключение, когда на основе сходства двух объектов по каким-то одним параметрам делается вывод об их сходстве по другим параметрам. Напр., планеты Марс и Земля во многом сходны: они расположены рядом в Солнечной системе, на обеих есть вода и атмосфера и т. д.; на Земле есть жизнь; поскольку Марс похож на Землю с точки зрения условий, необходимых для существования живого, можно сделать вывод, что на Марсе также имеется жизнь. Это заключение является, очевидно, только правдоподобным. А. - понятие, известное со времен античной науки. Уже тогда было замечено, что уподобляться друг другу, соответствовать и быть сходными по своим свойствам могут не только предметы, но и отношения между ними. Помимо А. свойств существует также А. отношений. Напр., в известной планетарной модели атома его строение уподобляется строению Солнечной системы: вокруг массивного ядра на разных расстояниях от него движутся по замкнутым орбитам легкие электроны, подобно тому как вокруг Солнца обращаются планеты. Атомное ядро не похоже на Солнце, а электроны - на планеты; но отношение между ядром и электронами во многом подобно отношению между Солнцем и планетами. Продолжая это сходство, можно предположить, что электроны, как и планеты, движутся не по круговым, а по эллиптическим орбитам. Сходство сопряжено с различием и без различия не существует. А. всегда является попыткой продолжить "сходство несходного", причем продолжить его в новом, неизвестном направлении. Она не дает достоверного знания: если посылки рассуждения по А. истинны, это еще не означает, что и его заключение будет истинным. А., дающую высоковероятное знание, принято называть строгой или точной. Научные А. обычно являются строгими. Умо- [16] заключения по А., нередкие в повседневной жизни, как правило, не особенно строги, а то и просто поверхностны. От А., встречающихся в художественной литературе, точность вообще не требуется, у них иная задача, и оцениваются они по другим критериям, прежде всего по силе художественного воздействия. Для повышения вероятности выводов по А. необходимо стремиться к тому, чтобы было схвачено и выражено действительное, а не кажущееся сходство сопоставляемых объектов. Желательно, чтобы эти объекты были подобны в важных и существенных признаках, а не в случайных и второстепенных деталях. Полезно также, чтобы круг совпадающих признаков был как можно шире. Но наиболее важен для строгости А. характер связи сходных признаков предметов с переносимым признаком. Информация о сходстве должна быть того же типа, что и информация, распространяемая на другой предмет. Если исходное знание внутренне связано с переносимым признаком, вероятность вывода заметно возрастает. И наконец, при построении А. следует учитывать не только сходные черты сопоставляемых объектов, но и их различия. Если последние внутренне связаны с признаком, который предполагается перенести с одного объекта на другой, А. окажется маловероятной. Обращение к А. может диктоваться разными задачами. Она может привлекаться для получения нового знания, для того, чтобы менее понятное сделать более понятным, представить абстрактное в более доступной форме, конкретизировать отвлеченные идеи и проблемы и т. д. По А. можно также рассуждать о том, что недоступно прямому наблюдению. А. может служить средством выдвижения новых гипотез, являться своеобразным методом решения задач путем сведения их к ранее решенным задачам и т. п. Рассуждение по А. дало науке многие блестящие результаты, нередко совершенно неожиданные. Так, в XVII в. движение крови в организме сравнивали с морскими приливами и отливами; А. с насосом привела к идее непрерывной циркуляции крови. Д. Менделеев, построив таблицу химических элементов, нашел, что три места в ней остались незаполненными; на основе известных элементов, занимающих аналогичные места в таблице, он указал количественные и качественные характеристики трех недостающих элементов, и вскоре они были открыты. А. между живыми организмами и техническими устройствами лежит в основе бионики, использующей открытые закономерности структуры и жизнедеятельности организмов при решении инженерных задач и построении технических систем. [17] А. является, таким образом, мощным генератором новых идей и гипотез. Аналоговые переносы представляют собой достаточно твердую почву для контролируемого риска. С их помощью мобилизуются решения, уже доказавшие свою работоспособность, хотя и в другом контексте, и устанавливаются связи между новыми идеями и тем, что уже считается достоверным знанием. Вместе с тем А., и в особенности А. отношений, могут быть чисто внешними, подменяющими действительные взаимосвязи вещей, надуманными. Подобного рода уподобления были обычны в средневековом мышлении, на них опираются магия и всякого рода гадания и прорицания. А. обладает слабой доказательной силой. Продолжение сходства может оказаться поверхностным или даже ошибочным. Однако доказательность и убедительность далеко не всегда совпадают. Нередко строгое, проводимое шаг за шагом доказательство оказывается неуместным и убеждает меньше, чем мимолетная, но образная и яркая А. Доказательство - сильнодействующее средство исправления и углубления убеждений, в то время как А. подобна гомеопатическому лекарству, принимаемому ничтожными дозами, но оказывающему тем не менее заметный лечебный эффект. А. - излюбленное средство убеждения в художественной литературе, которой по самой ее сути противопоказаны сильные, прямолинейные приемы убеждения. А. широко используется также в обычной жизни, в моральном рассуждении, в идеологии, утопии и т. п. Метафора, являющаяся ярким выражением художественного творчества, представляет собой, по сути дела, своего рода сгущенную, свернутую А. Едва ли не всякая А., за исключением тех, что представлены в застывших формах, подобно притче или аллегории, спонтанно может стать метафорой. Примером метафоры с прозрачным аналогическим соотношением может служить следующее сопоставление Аристотеля: "...старость так относится к жизни, как вечер к дню, поэтому можно назвать вечер "старостью дня"... а старость - "вечером жизни"" (Поэтика. Гл. 21, 1457в.). В традиционном понимании метафора представляет собой троп, удачное изменение значения слова или выражения. С помощью метафоры собственное значение имени переносится на некоторое другое значение, которое подходит этому имени лишь ввиду того сравнения, которое держится в уме. Уже это истолкование метафоры связывает ее с А. Метафора возникает в результате слияния членов А. и выполняет почти те же функции, что и последняя. С точки зрения воздействия на эмоции и убеждения метафора даже лучше [18] справляется с этими функциями, поскольку она усиливает А., вводя ее в сжатом виде. АНТЕЦЕДЕНТ И КОНСЕКВЕНТ (от лат. antecedent - предшествующий, предыдущий и consequens - следствие) - два высказывания, из которых с помощью логической операции импликации ("если..., то ...") образуется сложное импликативное высказывание. А. - высказывание, которому предпослано слово "если", К. - высказывание, идущее после слова "то". Два высказывания, составляющие условное высказывание, именуются также основанием и следствием. АНТИНОМИЯ (от греч. antinomia - противоречие в законе) -рассуждение, доказывающее, что два высказывания, являющиеся отрицанием друг друга, вытекают одно из другого. Характерным примером логической А. является "лжеца" парадокс. Наибольшую известность из открытых уже в XX в. А. получила A. Рассела. Примером достаточно простой и оригинальной А. может быть следующее: некоторые слова, обозначающие свойства, обладают тем самым свойством, которое они называют. Так, прилагательное "русский" само является русским, "многосложное" - многосложно, а "пятислоговое" - имеет пять слогов. Такие слова, относящиеся к самим себе, называют аутологическими; слова, не имеющие свойства, обозначаемого ими, - гетерологическими. Последних в языке подавляющее большинство: "сладкое" не является сладким, "холодное" - холодным, "однослоговое" - однослоговым и т. д. Разделение прилагательных на две группы представляется ясным и не вызывающим возражений. Оно может быть распространено и на существительные: "слово" само является словом, "существительное" - существительным, но "стол" - это не стол, а "глагол" - не глагол, а существительное. А. обнаруживается, как только задается вопрос: к какой из двух групп относится само прилагательное "гетерологическое". Если оно аутологическое, то обладает обозначаемым им свойством и должно быть гетерологическим. Если же оно гетерологическое, то не имеет называемого им свойства и должно быть поэтому аутологическим. Необходимым признаком логической А. обычно считается логический словарь, в терминах которого она формулируется. Однако в логике нет четких критериев деления терминов на логические и внелогические. Кроме того, в логических терминах можно сформулировать и внелогические утверждения. На первых порах изучения А. казалось, что их можно выделить по нарушению какого-то еще не исследованного положения или правила логики. Особенно активно претендовал на роль такого [19] правила введенный Б. Расселом "принцип порочного круга", согласно которому в совокупность не должны входить объекты, определимые только посредством этой же совокупности. Все А. имеют общее свойство - самоприменимость, или циркулярность. В каждой А. объект, о котором идет речь, характеризуется посредством совокупности объектов, к которой он сам принадлежит. Если мы, к примеру, говорим: "Это высказывание ложно", мы характеризуем данное высказывание путем ссылки на совокупность всех ложных высказываний, включающих и данное высказывание. Однако циркулярность - свойство и многих непарадоксальных рассуждений. Такие примеры, как "самый большой из всех городов", "наименьшее из всех натуральных чисел", "один из электронов атома меди" и т. п., показывают, что далеко не всегда циркулярность ведет к противоречию. Однако провести различие между "вредной" и "безвредной" циркулярностью не удается. А. свидетельствуют о несовершенстве обычных методов образования понятий и методов рассуждения. Они играют роль контролирующего фактора, ставящего ограничения на пути конструирования систем логики. Один из предлагавшихся путей устранения А. - выделение наряду с истинными и ложными бессмысленных высказываний. Этот путь был предложен Б. Расселом, объявившим А. бессмысленными на том основании, что в них нарушаются требования особой "логической грамматики". В качестве последней Б. Рассел предложил теорию типов, вводящую своеобразную иерархию рассматриваемых объектов: предметов, свойств предметов, свойств свойств предметов и т. д. Свойства можно приписывать предметам, свойства свойств - свойствам и т. д., но нельзя осмысленно утверждать, что свойства свойств имеются у предметов. Напр., высказывания "Это дерево - зеленое", "Зеленое - это цвет" и "Цвет - это оптическое явление" осмысленны, а, скажем, высказывания "Этот дом есть цвет" и "Этот дом есть оптическое явление" - бессмысленны. Исключение А. достигается также путем отказа от "чрезмерно больших множеств", подобных множеству всех множеств. Этот путь был предложен немецким математиком Е. Цермело, связавшим появление А. с неограниченным конструированием множеств. Допустимые множества были определены им некоторым списком аксиом, сформулированным так. чтобы не выводились известные А. Были предложены и другие способы устранения А. Ни один из них не лишен, однако, возражений. АНТИНОМИЯ РАССЕЛА - одна из наиболее известных логических антиномий, обнаруженная в начале этого века англ. философом и логиком Б. Расселом (1872-1970). [20] А. Р. связана с понятием множества. Относительно каждого множества представляется осмысленным задать вопрос, является оно своим собственным элементом или нет. Напр., множество всех людей не является человеком, так же как множество стульев - это не стул. Но множество, объединяющее все множества, представляет собой множество и, значит, содержит самое себя в качестве элемента. Назовем множества, не содержащие себя в качестве элемента, обычными,а содержащие себя - необычными и рассмотрим множество, составленное из всех обычных множеств. Поскольку это множество, о нем можно спрашивать, обычное оно или нет. Ответ, однако, оказывается обескураживающим. Если оно обычное, то, согласно своему определению, не должно содержать самое себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что рассматриваемое множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит самое себя в качестве элемента, а элементами рассматриваемого множества являются только обычные множества. В итоге множество всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не является таким элементом. Полученное противоречие говорит о том, что такого множества не существует. Но если столь просто и ясно заданное множество не может существовать, то в чем различие между возможными и невозможными множествами? Наивное, или интуитивное, представление о множестве как сколь угодно обширном соединении в чем-то однородных объектов способно вести, таким образом, к противоречию и нуждается в прояснении и уточнении. А. Р. не имеет специфически математического характера, ее можно переформулировать в чисто логических терминах. Б.Рассел предложил следующий популярный вариант открытой им антиномии. Представим, что совет какой-то деревни так определил обязанности парикмахера: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Таким образом, этот парикмахер бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно. [21] Для избежания этой и других антиномий Б. Рассел построил теорию логических типов (см.: Антиномия). Другим способом устранения А. Р. является отказ от использования "слишком больших множеств". Ни первый, ни второй из этих способов не являются общепризнанными. АНТИТЕЗИС (от греч. antithesis - противоположение) - суждение, противоречащее тезису некоторого построенного доказательства. А. используется в косвенном доказательстве тезиса: мы обосновываем ложность А. и, опираясь на закон исключенного третьего, гласящий, что из двух противоположных суждений одно обязательно истинно, тем самым доказываем истинность противоречащего ему суждения - тезиса. АПОДИКТИЧЕСКИЙ (от греч. apodeiktikos - доказательный, убедительный) - безусловно достоверный, основанный на необходимости, неопровержимый. В традиционной логике принято разделять суждения по модальности, т. е. по характеру связи между субъектом и предикатом, на три вида: вероятностные - "5, вероятно, есть Р", ассерторические - "S есть Р" и А. - "S необходимо есть Р". В суждениях первого вида отражаются возможные связи между субъектом и предикатом, напр.: "Илиада" есть, вероятно, продукт коллективного творчества"; ассерторическое суждение утверждает наличие действительно существующей связи между субъектом и предикатом, напр.: "Киев расположен на берегу Днепра"; А. суждение выражает необходимую связь субъекта и предиката: "Вокруг проводника, по которому проходит электрический ток, возникает магнитное поле". Если ассерторические суждения используются для констатации фактов, то в А. суждениях выражаются законы природы. Различие между первыми и вторыми не может быть усмотрено из самой формы суждений и является не вполне определенным. Необходимость А. суждения должна быть обоснована с помощью теоретического доказательства. АПОРИЯ (от греч. aporia - затруднение, недоумение) - трудноразрешимая проблема, связанная с противоречием между данными опыта и их мысленным анализом. Наиболее известны А., сформулированные древнегреч. философом Зеноном Элейским (ок. 490 - ок. 430 до н. э.). В А. "Ахилл" говорится о том, что быстроногий Ахилл не способен догнать медлительную черепаху, так как, пока он пробежит разделяющее их расстояние, она проползет немного, пока он будет пробегать этот отрезок, она еще немного отползет и т. д. А. "Дихотомия" говорит, что, прежде чем пройти весь путь, движущееся тело должно пройти его половину, а до [22] этого - половину половины и т. д.; процесс такого деления бесконечен, поэтому тело вообще не может начать двигаться или, если оно уже движется, движение не может окончиться. Эти и подобные им А. теперь признаются подлинными парадоксами, связанными, в частности, с описанием движения. А. близка к антиномии, но отличается от последней. Антиномия представляет собой обоснование двух несовместимых утверждений, одно из которых отрицает другое. А. же выдвигает и обосновывает положение, явно противоречащее опыту. А. обычны и в современном мышлении. Всякий раз, когда принятая и хорошо апробированная теория вдруг резко расходится с достаточно твердо установленными фактами, можно говорить о возникновении затруднения, называвшегося в древности А. Напр., устойчивость мира является очевидным фактом. Одни и те же вещества постоянно выступают с одними и теми же свойствами, образуются одни и те же кристаллы, возникают одни и те же соединения и т. п. Вместе с тем с точки зрения классической механики Ньютона такая устойчивость является в принципе недостижимой. Н. Бор указывал, что именно размышление над данным затруднением заставило его отказаться от классической механики при объяснении внутреннего строения атома. Это противоречие между тем, что дано в наблюдении, и тем, что предписывает ньютоновская механика, является типичной А. АРГУМЕНТ (лат. argumentum) - суждение (или совокупность взаимосвязанных суждений), посредством которого обосновывается истинность к.-л. другого суждения (или теории). При доказательстве некоторого суждения А. являются основаниями, или посылками, из которых логически следует доказываемое суждение. Напр., для доказательства суждения "Железо плавко" мы можем воспользоваться двумя А.: "Все металлы плавки" и "Железо есть металл". Приняв эти два суждения в качестве посылок, мы можем логически вывести из них доказываемое суждение и тем самым обосновать его истинность. А., используемые в процессе доказательства некоторого суждения, должны удовлетворять следующим правилам: 1. А. должны быть истинными суждениями. 2. А. должны быть суждениями, истинность которых устанавливается независимо от тезиса. 3. А. должны быть достаточным основанием для доказываемого тезиса. Нарушение указанных правил приводит к различным логическим ошибкам, делающим доказательство некорректным. [23] А., используемые в дискуссии, споре, могут быть разделены на два вида: A. ad rem (к существу дела) и A. ad hominem (к человеку). А. первого вида имеют отношение к обсуждаемому вопросу и направлены на обоснование истинности доказываемого положения. В качестве таких А. могут использоваться основоположения или принципы некоторой теории; определения понятий, принятые в науке; суждения, описывающие установленные факты; ранее доказанные положения и т. п. Если А. данного вида удовлетворяют перечисленным выше правилам, то опирающееся на них доказательство будет корректным с логической точки зрения. Страницы: « 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 » »» |
Последнее поступление книг:
Нинул Анатолий Сергеевич - Оптимизация целевых функций. Аналитика. Численные методы. Планирование эксперимента.
(Добавлено: 2011-02-24 16:42:44) Нинул Анатолий Сергеевич - Тензорная тригонометрия. Теория и приложения. (Добавлено: 2011-02-24 16:39:38) Коллектив авторов - Журнал Радио 2006 №9 (Добавлено: 2010-11-08 19:19:32) Коллектив авторов - Журнал Радио 2009 №1 (Добавлено: 2010-11-05 01:35:35) Вильковский М.Б. - Социология архитектуры (Добавлено: 2010-03-01 14:28:36) Бетанели Гванета - Гитарная бахиана. Авторская серия «ПОЗНАВАТЕЛЬНОЕ» (Добавлено: 2010-02-06 19:45:20) |