Главная - Наука - Биология
Феоктистов Константи - Траектория жизни Скачать книгу Вся книга на одной странице (значительно увеличивает продолжительность загрузки) Всего страниц: 97 Размер файла: 708 Кб Страницы: «« « 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 » »» высококипящими компонентами третьей ступени. Корпуса пороховых ускорителей после их отделения совершают полет по баллистической траектории, входят в атмосферу, тормозятся, у них раскрываются парашюты, и на парашютах они приводняются в океане. Потом морские корабли буксируют их к суше, и они могут по идее после восстановительного ремонта и установки в них твердого топлива повторно использоваться. Предполагалось, что в этой схеме будет экономиться примерно сорок процентов расходов на изготовление пороховых ускорителей. Но ясных сообщений о том, что это осуществляется после каждого пуска, мне встречать не приходилось. Центральный блок после отделения от третьей ступени входит в атмосферу, часть его сгорает во время торможения в атмосфере, а остатки падают в океан. Так что после доставки груза на орбиту назад возвращается практически только третья ступень системы "Спейсшаттл", которой и является самолет "Шаттл". На основании анализа недостатков одноразовых носителей и системы "Спейсшаттл" складывается представление о качествах, которыми должна обладать хорошая ракета-носитель, обеспечивающая доставку на орбиту полезного груза с минимальными затратами и с максимальной надежностью. Она должна быть системой многоразового использования, способной совершать 100-1000 полетов. Многоразовость с целью снижения затрат на каждый полет (расходы на разработку и изготовление распределяются на количество полетов) и одновременно с целью повышения надежности выведения полезного груза на орбиту: каждая поездка на автомобиле и полет самолета подтверждают правильность его конструкции и качественное его изготовление. Следовательно, можно снижать затраты на страхование полезного груза и на страхование самой ракеты. По настоящему надежными и недорогими в эксплуатации машинами могут быть только многоразовые, такие, как паровоз, автомобиль, самолет. Она должна быть одноступенчатая. Это требование, так же как и многоразовость, связано и с минимизацией расходов, и с обеспечением надежности. Действительно, если ракета многоступенчатая, то даже если все ее ступени благополучно возвращаются на Землю, то ведь перед каждым стартом их надо собирать в единое целое, и проверить правильность сборки и функционирования процессов разделения ступеней после сборки невозможно, так как при каждой проверке собранная машина должна рассыпаться. Не испытываемые, не проверяемые на функционирование после сборки, соединения становятся как бы одноразовыми. И пакет, соединенный узлами с пониженной надежно-стью, тоже становится в какой-то степени одноразовым. Если ракета многоступенчатая, то расходы на ее эксплуатацию больше, чем на эксплуатацию одноступенчатой машины. Во-первых, для одноступенчатой машины не требуются расходы на сборку. Во-вторых, не нужно выделять на поверхности Земли районы приземления для посадки первых ступеней, а следовательно, не нужно платить за их аренду, за то, что эти районы не используются в хозяйстве. В-третьих, нет необходимости платить за транспортировку первых ступеней к месту старта. В-четвертых, заправка многоступенчатой ракеты требует более сложной технологии, большего времени. Сборка пакета и доставка ступеней к месту старта не поддаются простейшей автоматизации и, следовательно, требуют участия большего количества специалистов при подготовке такой ракеты к очередному полету. Ракета должна использовать в качестве топлива водород и кислород, в результате горения которых на выходе из двигателя образуются экологически чистые продукты сгорания при высоком удельном импульсе. Экологическая чистота важна не только для работ, проводимых на старте, при заправке, в случае аварии, но и в не меньшей степени во избежание вредного воздействия продуктов сгорания на озоновый слой атмосферы. Маршевый двигатель ракеты должен иметь достаточно оптимальную высотную характеристику, с тем чтобы на каждой высоте полета иметь максимальный удельный импульс. Схема полета ракеты также должна быть наиболее оптимальной, требующей, с одной стороны, минимума топлива для выведения ракеты на орбиту, а с другой - не требующая топлива для схода ракеты с орбиты, возвращения на космодром и, соответственно, не требующая установки тормозного или корректирующего двигателя. Для осуществления полета, возвращения, посадки и подготовки к полету желательно привлекать минимальное количество специалистов. Этого можно добиться за счет использования достаточно мощного бортового вычислительного комплекса, обеспечивающего контроль и диагностику конструкции и оборудования ракеты, автономного и автоматического при необходимости переключения на резервные приборы и элементы оборудования, автоматическую диагностику при подготовке ракеты к запуску и при испытаниях корабля. На самой ракете не должно быть экипажа, чтобы не тратить массы на самих пилотов, систему аварийного спасения, средства управления и на обеспечение их жизнедеятельности. При использовании ракеты для выведения пилотируемых кораблей система аварийного спасения, средства ручного управления и сам экипаж будут входить в массу корабля. Конструкция ракеты должна иметь высокую степень совершенства, с тем чтобы масса полезного груза составляла не менее 3-4 процентов от стартовой массы ракеты. Возникает вопрос: а можно ли выполнить столь жесткие требования? Думаю, что это нелегко, но возможно, если ясно видеть цель и подчинять ей работу по созданию машины. Сегодня представляются наиболее целесообразными три схемы многоразовых одноступенчатых ракет: с вертикальным взлетом и с вертикальной посадкой (чисто ракетная схема); с вертикальным взлетом и с самолетной посадкой (так сказать "крылатая ракета"); с горизонтальным взлетом и с самолетной посадкой (типа рассматривавшегося в семидесятые-восьмидесятые годы английского проекта "Хотолл"). Последнюю схему можно назвать революционной. Ее идея исходит из желания преодолеть основной недостаток современных ракет: в баках ракеты размещается не только горючее, но и окислитель (и его приходится тоже разгонять), хотя часть полета проходит в плотных слоях атмосферы, где кислорода вполне достаточно и его вроде бы логично использовать. До последнего времени всерьез в этом направлении не работали. И это не случайно: для использования кислорода на ракете, помимо жидкостных ракетных двигателей (большая часть полета все же проходит вне плотных слоев атмосферы), нужно устанавливать воздушно-реактивные двигатели. А они гораздо тяжелее жидкостных ракетных двигателей с той же тягой. Сейчас представляется возможным создание воздушно-реактивных двигателей, работающих до скорости порядка 1500-1700 метров в секунду, что могло бы дать существенный выигрыш в массе носителя, если бы удалось создать достаточно легкий комбинированный двигатель, который на взлете и в плотных слоях атмосферы работал бы в режиме Страницы: «« « 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 » »» |
Последнее поступление книг:
![]() (Добавлено: 2011-02-24 16:42:44) ![]() (Добавлено: 2011-02-24 16:39:38) ![]() (Добавлено: 2010-11-08 19:19:32) ![]() (Добавлено: 2010-11-05 01:35:35) ![]() (Добавлено: 2010-03-01 14:28:36) ![]() (Добавлено: 2010-02-06 19:45:20) |