Главная - Справочная литература - Словари
Ивин А.А. - Словарь по логике Скачать книгу Вся книга на одной странице (значительно увеличивает продолжительность загрузки) Всего страниц: 44 Размер файла: 889 Кб Страницы: «« « 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 » - С., имеющий своей целью достижение победы над противоположной стороной с использованием как корректных, так и некорректных приемов. С. об истине, использующий и некорректные приемы, наз. "эклектикой" на том основании, что такие приемы плохо согласуются с самой природой истины. Скажем, расточая комплименты всем присутствующим при С. или, напротив, угрожая им силой, можно склонить их к мнению, что 137 - простое число. Но вряд ли сама истина выиграет при таком способе ее утверждения. Тем не менее эклектические С., в которых истина поддерживается чужеродными ей средствами, существуют, и они не столь уж редки. Они встречаются даже в науке, особенно в период формирования научных теорий, когда осваивается новая проблематика и еще не достижим синтез разрозненных фактов, представлений и гипотез в единую систему. Известно, что Галилей, отстаивавший когда-то гелиоцентрическую систему Коперника, победил благодаря не в последнюю очередь своему стилю и блестящей технике убеждения: он писал на итальянском, а не на быстро устаревавшем латинском языке, и обращался напрямую к людям, пылко протестовавшим против ста- [323] рых идей и связанных с ними канонов обучения. Для самой истины безразлично, на каком языке она излагается и какие люди ее поддерживают. Тем не менее пропагандистские приемы Галилея определенно сыграли позитивную роль в распространении и укреплении гипотезы Коперника. Наука делается людьми, на которых оказывают воздействие и некорректные приемы аргументации. Осуждения заслуживает софистика, ставящая своей единственной целью победу в С. любой ценой, не считаясь ни с чем, даже с истиной и добром. Не существует общего перечня требований, которому удовлетворяли бы все четыре разновидности С. Софистика вообще не стеснена никакими правилами: в софистическом С. может быть нарушено любое общее требование, не исключая требования быть логичным или требования знать хотя бы приблизительно те проблемы, о которых зашел С. Для трех остальных разновидностей С. можно попытаться сформулировать общие требования, если подразумевается, что спорящие ориентируются в конечном счете на раскрытие истины или добра. СРАВНИТЕЛЬНЫЕ МОДАЛЬНОСТИ, см.: Абсолютные и сравнительные модальности. СТРОГАЯ ИМПЛИКАЦИЯ, см.: Импликация, Парадоксы импликации, Логика. СТРОГОСТЬ - комплексная характеристика рассуждения, учитывающая степень ясности и точности используемых в нем терминов, достоверность исходных принципов, логическую обоснованность переходов от посылок к следствиям. Еще с античности С. считалась отличительной чертой математического рассуждения. Логическая необходимость математических доказательств и точность вычислений позволяют рассматривать математику как образец формальной С. для других наук. Иногда считают, что именно С. рассуждения гарантирует абсолютную надежность результатов математики. Как показывает история науки, понятие С. развивалось постепенно. В ходе общего прогресса науки обычно оказываются превзойденными каноны С., представлявшиеся ранее абсолютно безупречными. Так обстояло, в частности, дело с геометрией Евклида. Долгое время она являлась идеалом С., но в XIX в. Н. М. Лобачевский писал о ней: "...Никакая Математическая наука не должна бы начинаться с таких темных понятий, с каких, повторяя Евклида, начинаем мы Геометрию, и... нигде в Математике нельзя терпеть такого недостатка С., какой принуждены были допустить в теории параллельных линий". [324] С. обеспечивается выводами из достоверных принципов, но вместе с тем сами общие принципы начинают восприниматься как достоверные, когда дают возможность сделать строгими прежде нестрогие рассуждения. На разных этапах развития научной теории требование С. может быть более или менее актуальным. За поисками строгих доказательств уже известных истин обычно скрывается недостаток их понимания и стремление выявить все те неявные условия, с которыми связано их принятие. С., как правило, не является самоцелью. Введение С. может быть консервативным, опирающимся на общепринятые посылки, но может быть также революционным, вводящим посылки, казавшиеся ранее неприемлемыми. Так, выдвинутое Г. Лейбницем требование строгой и внимательной проверки каждого шага в цепи доводов вместе с его идеей рассуждения как вычисления по однозначно определенным правилам означало революцию в логике. С., в том числе и в математике, не является сама по себе объективным критерием истинности и ценности новых открытий и теорий. СУЖДЕНИЕ - мысль, выражаемая повествовательным предложением и являющаяся истинной или ложной. С. лишено психологического оттенка, свойственного утверждению. Хотя С. находит свое выражение только в языке, оно, в отличие от предложения, не зависит от конкретного языка; сообщение о том, что некоторое С. высказывалось в определенной ситуации, не нуждается в указании, какой при этом использовался язык. Одно и то же С. может быть выражено различными предложениями одного и того же языка или разных языков. Так, фраза "Плавт сказал, что человек человеку волк" сообщает, какое С. высказал Плавт, но ничего не говорит о том, каким он пользовался языком. Эта мысль может быть выражена как на русском, так и на других языках. Если же мы говорим о том, что какое-то С. высказывалось кем-то, мы не сумеем передать свою мысль, пока не укажем, какой при этом употреблялся язык. Верно, что Плавт высказал предложение "Homo homini lupus est", но неверно, что он произнес когда-то предложение "Человек человеку волк". С. можно охарактеризовать как то общее, что имеют два предложения, являющиеся правильными переводами друг друга. Термин "С." широко использовался логикой традиционной. В современной логике обычно пользуются термином "высказывание", обозначающим грамматически правильное предложение, взятое вме- [325] сте с выражаемым им смыслом (см.: Высказывание, Высказывание дескриптивное, Оценочное высказывание). СУППОЗИЦИЯ (от лат. suppositio - подкладывание, подмена) - термин, использовавшийся средневековыми логиками для обозначения разных употреблений термина. В обычном языке один и тот же термин может относиться к предметам различных типов. Во-первых, он может использоваться для обозначения отдельного предмета соответствующего класса. Это употребление термина в его собственном, или обычном, смысле называется формальной (или естественной) С. Напр., слово "человек" обычно является общим именем множества людей. Говоря "Человек смертен", мы имеем в виду: "Все люди смертны", т. е. "Каждый из людей смертен". Во-вторых, слово может обозначать себя, т. е. использоваться в качестве своего собственного имени. Примерами такого употребления слова "человек" могут служить утверждения: ""Человек" начинается с согласной буквы", ""Человек" состоит из трех слогов", ""Человек" - существительное с неправильным множественным числом". Это т. наз. материальная С., или роль слова. В-третьих, слово, когда оно используется в определенном контексте, может оказаться именем единичного объекта того класса объектов, который обычно обозначается этим словом. Так, слово "человек" обозначает множество людей, но в конкретном случае оно может употребляться для обозначения отдельного человека: мы говорим "Идет человек", подразумевая: "Идет конкретный человек". Такая роль слова называется персональной С. В-четвертых, слово может употребляться для обозначения всего соответствующего класса объектов, взятого как целое. Это - т. наз. простая С. Слово "человек" обозначает в ней всех людей, рассматриваемых как некоторое единство: "Человек является одним из видов животных". Изучение С. терминов важно для предотвращения логических ошибок. Если кто-то обещает говорить по-китайски, это может означать как то, что он заговорит на китайском языке (формальная С.), так и то, что он начнет монотонно повторять: "По-китайски, по-китайски ..." (материальная С.). В рассуждении "Поскольку человек - вид живых существ, а столяр - человек, то столяр - вид живых существ" явно смешиваются персональная и простая С. слова "человек". В современной логике из многочисленных С., выделявшихся средневековыми логиками, сохранило свое значение различение формальной и материальной С. Все остальные С. слишком громоздки и неточны для того, чтобы ими пользоваться, во многом они опираются на определенную аморфность естественного языка. При пост- [326] роении искусственных (формализованных) языков логики, от которых требуется однозначность, употребление одного и того же термина во многих разных "ролях" способно привести к неопределенности и ошибкам. Использование слова или иного выражения в материальной С., т. е. в качестве имени самого себя, получило название автонимного употребления выражений. Оно широко распространено в логике и других науках. Сохранение в одном языке двух "ролей" одних и тех же слов - их формальной и материальной С. - двусмысленно. Но эта двусмысленность часто бывает удобной. Напр., вместо того чтобы писать слова "знак импликации", мы можем писать "->", и эта стрелка является именем самой себя. Двусмысленностей и непонимания, связанных с путаницей между обычным употреблением слова и его употреблением как своего собственного имени, можно всегда избежать. Для этого используются либо дополнительные слова в формулировке утверждения, либо кавычки, либо курсив. Скажем, кто-то может написать: "Человек состоит из трех слогов". Но чтобы не возникло недоразумения, лучше употребить какую-либо из следующих формулировок: "Слово "человек" состоит из трех слогов", или ""Человек" состоит из трех слогов", или "Человек состоит из трех слогов". СУЩЕСТВЕННЫЙ ПРИЗНАК, см.: Определение понятия. СХОДСТВО - наличие хотя бы одного общего признака у изучаемых предметов. Отношение сходства двух предметов в достаточно определенных признаках обладает свойствами симметричности (см.: Отношение симметричное), транзитивности (см.: Отношение транзитивное) и рефлексивности (см.: Отношение рефлексивное). С. есть отношение, родственное отношению равенства. [337] Т ТАБЛИЦА ИСТИННОСТИ - таблица, с помощью которой устанавливается истинностное значение сложного высказывания при данных значениях входящих в него простых высказываний. В классической математической логике предполагается, что каждое простое (не содержащее логических связок) высказывание является либо истинным, либо ложным, но не тем и другим одновременно. Нам не известно, истинно или ложно данное простое высказывание, чтобы установить это, потребовалось бы обратиться к фактам действительности, но логика этого не делает. Однако мы знаем, что у высказывания имеется лишь две возможности - быть истинным либо быть ложным. Когда с помощью логических связок мы соединяем простые высказывания в сложное, встает вопрос: при каких условиях сложное высказывание считается истинным, а при каких - ложным? Для ответа на этот вопрос и служат Т. и. Каждая логическая связка имеет свою таблицу, которая показывает, при каких наборах значений простых высказываний сложное высказывание с этой связкой будет истинным, а при каких - ложным. Приведем Т. и. для отрицания, конъюнкции, дизъюнкции и импликации ("и" означает "истина", "л" - "ложь"): А ~ А А В А&В A v B A-> в и л и и и и и л и и л л и л л и л и и л л л л и Пользуясь приведенными таблицами, для любого сложного высказывания, содержащего указанные связки, можем построить Т. и.. [328] которая покажет, когда высказывание истинно и когда - ложно. В качестве примера построим Т. и. для такого высказывания: (A v~B) -> B. А B (Av~B) ->B 1 и и и и 2 и л Страницы: «« « 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 » |
Последнее поступление книг:
Нинул Анатолий Сергеевич - Оптимизация целевых функций. Аналитика. Численные методы. Планирование эксперимента.
(Добавлено: 2011-02-24 16:42:44) Нинул Анатолий Сергеевич - Тензорная тригонометрия. Теория и приложения. (Добавлено: 2011-02-24 16:39:38) Коллектив авторов - Журнал Радио 2006 №9 (Добавлено: 2010-11-08 19:19:32) Коллектив авторов - Журнал Радио 2009 №1 (Добавлено: 2010-11-05 01:35:35) Вильковский М.Б. - Социология архитектуры (Добавлено: 2010-03-01 14:28:36) Бетанели Гванета - Гитарная бахиана. Авторская серия «ПОЗНАВАТЕЛЬНОЕ» (Добавлено: 2010-02-06 19:45:20) |