Материалы размещены исключительно с целью ознакомления учащихся ВУЗов, техникумов, училищ и школ.
Главная - Справочная литература - Словари
Ивин А.А. - Словарь по логике

Скачать книгу
Вся книга на одной странице (значительно увеличивает продолжительность загрузки)
Всего страниц: 44
Размер файла: 889 Кб
Страницы: «« « 27   28   29   30   31   32   33   34   35  36   37   38   39   40   41   42   43   44  »

скриптивным, а другой - эмоциональным. Взаимосвязь аспектов каждого из полюсов не является постоянной: в разных ситуациях один из аспектов становится доминирующим, а остальные отходят на задний план.
   У С. всегда имеется целое семейство значений. Они связываются в единство посредством аналогии или ассоциации, которые могут опираться как на реальный, так и на вымышленный мир. С. конденсирует множество идей, действий, отношений между вещами и т. д. Он является свернутой формой высказывания или даже целого рассказа. Как таковой, он всегда не только многозначен, но и неопределенен. Его значения чаще всего разнородны: это могут быть образы и понятия, конкретное и абстрактное, познание и эмоции, сенсорное и нормативное. С. может представлять разнородные и даже противоположные темы. Нередко даже контекст, в котором он фигурирует, оказывается неадекватным в качестве средства ограничения его многозначности. Единство значений С. никогда не является чисто познавательным, во многом оно основывается на интуиции и чувстве.
   С. как универсальная (эстетическая) категория раскрывается через сопоставление его с категориями художественного образа, с одной стороны, знака и аллегории - с другой. Наличие у С. внешнего и внутреннего содержания сближает его с софизмом, антиномией, притчей как особыми формами первоначальной, неявной постановки проблемы.
   С. является, далее, подвижной системой взаимосвязанных функций. В познавательных целях он используется для классификации вещей, для различения того, что представляется смешавшимся и неясным. В других функциях он, как правило, смешивает многие по очевидности разные вещи. В эмотивной функции С. выражает состояния души того, кто его использует. В эректической функции С. служит для возбуждения определенных желаний и чувств. При использовании С. с магической целью он должен, как предполагается, привести в действие определенные силы, нарушая тем самым привычный, считаемый естественным ход вещей.
   Эти функции С. выступают обычно вместе, во взаимопереплетении и дополнении. Но в каждом конкретном случае доминирует одна из них, что позволяет говорить о познавательных С., магических С. и т. д.
   Всякое познание всегда символично. Это относится и к научному познанию. С., используемые для целей познания, имеют, однако, целый ряд особенностей.
   Прежде всего, у этих С. явно доминирует познавательный аспект и уходит в глубокую тень возбуждающий момент. Смыслы, сто-
[307]
ящие за познавательным С., являются довольно ясными, во всяком случае они заметно яснее, чем у С. других типов. Из серии смыслов познавательного С. лишь один оказывается уместным в момент предъявления конфигурации С. Это придает такому С. аналитическую силу и позволяет ему служить хорошим средством предварительной ориентировки и классификации. Для познавательных С. особенно важна та символическая конфигурация, в которой они выступают: она выделяет из многих смыслов С. его первоплановый смысл. Употребление познавательного С. не требует, чтобы использующий его выражал с его помощью какие-то особые и тем более чрезвычайные эмоции или чувства. Напротив, это употребление предполагает определенную рассудительность и рациональность как со стороны того, к кому обращен С., так и со стороны того, кто его употребляет. Последний должен отстраниться и снять по возможности субъективный момент; объективируя С., он должен позволить ему говорить от себя. Относительно ясны не только смыслы познавательного С., но и их связи между собой, а также связь смыслов с тем контекстом, в котором используется С.: конфигурации смыслов С. почти всегда удается поставить в соответствие определенную конфигурацию элементов самого контекста.
   В познании С. играют особенно важную и заметную роль в периоды формирования научных теорий и их кризиса, когда нет еще твердой в ядре и ясной в деталях программы исследований или она начала уже разлагаться и терять определенность. По мере уточнения, конкретизации и стабилизации теории роль С. в ней резко падает. Они постепенно "окостеневают" и превращаются в "знаки". В дальнейшем, в условиях кризиса и разложения теории, многие ее знаки снова обретают характер С.: они становятся многозначными, начинают вызывать споры, выражают и возбуждают определенные душевные состояния, побуждают к деятельности, направленной на трансформацию мира, задаваемого теорией, на нарушение привычных, "естественных" связей его объектов.
   Так, выражение "v-1" было С. до тех пор, пока не была разработана теория мнимых и комплексных чисел. Введенное Лейбницем выражение для обозначения производных "(dx/dy)" оставалось С. до XIX в., когда Коши и Больцано была найдена подходящая интерпретация для этого С., т. е. был однозначно определен его смысл. Кризис теории и появление в ней парадоксов - характерный признак того, что центральные ее понятия превратились в многозначные и многофункциональные С.
   СИМВОЛИКА ЛОГИЧЕСКАЯ
    - система знаков (символов), используемая в логике для обозначения термов, предикатов, выска-

[308]
зываний, логических функций, отношений между высказываниями. В разных логических системах могут использоваться различные системы обозначений, поэтому ниже мы приводим лишь наиболее употребительные символы из числа используемых в литературе по логике:
а, b, с, ...

- начальные буквы латинского алфавита, обычно используются для обозначения индивидуальных константных выражений, термов;
A, В, С, ...

- прописные начальные буквы латинского алфавита, обычно используются для обозначения конкретных высказываний;

х, у, z, ...

- буквы, стоящие в конце латинского алфавита, обычно используются для обозначения индивидных переменных;
X, Y, Z, ...

- прописные буквы, стоящие в конце латинского алфавита, обычно используются для обозначения переменных высказываний или пропозициональных переменных; для той же цели часто используют маленькие буквы середины латинского алфавита: р, q, r, ...;
~ ; u

- знаки, служащие для обозначения отрицания; читаются: "не", "неверно что";
; U ; &

- знаки для обозначения конъюнкции - логической связки и высказывания, содержащего такую связку в качестве главного знака; читаются: "и";
U

- знак для обозначения неисключающей дизъюнкции - логической связки и высказывания, содержащего такую связку в качестве главного знака; читается: "или";


- знак для обозначения строгой, или исключающей, дизъюнкции; читается: "либо, либо";
®; E

- знаки для обозначения импликации - логической связки и высказывания, содержащего такую связку в качестве главного знака; читаются: "если, то";
? ; «

- знаки для обозначения эквивалентности высказываний; читаются: "если и только если";


- знак, обозначающий выводимость одного высказывания из другого, из множества высказываний; читается: "выводимо" (если высказывание А выводимо из пустого множества посылок, что записывается как " A", то знак "  " читается: "доказуемо");
T ; t
F ; f
- истина (от англ. true - истина); - ложь (от англ. false - ложь);
"
- квантор общности; читается "для всякого", "всем";

[309]

$

- квантор существования; читается: "существует", "имеется по крайней мере один";
L, N, 

- знаки для обозначения модального оператора необходимости; читаются: "необходимо, что";
М, a 

- знаки для обозначения модального оператора возможности; читаются: "возможно, что".
   Наряду с перечисленными в многозначных, временных, деонтических и других системах логики используются свои специфические символы, однако каждый раз разъясняется, что именно тот или иной символ обозначает и как он читается (см.: Знак логический). 
   СИМВОЛИЧЕСКАЯ ЛОГИКА
    - одно из названий современного этапа в развитии формальной логики.
   Символы применял в ряде случаев еще Аристотель (384 - 322 до н. э.), а затем и все последующие ученые-логики. Однако в современной С. л. был сделан качественно новый шаг в использовании символики. Стали использовать языки, содержащие только специальные символы и не включающие слова обычного разговорного языка.
   СИМВОЛЫ СОБСТВЕННЫЕ И НЕСОБСТВЕННЫЕ
    - символы, получающиеся в результате разложения предложения или иного языкового выражения на простые, далее неразложимые части. С. с. имеют содержание даже в том случае, если взяты сами по себе. К ним относятся имена, обозначающие некоторые объекты, и переменные, отсылающие к какой-то области объектов. С. н. не имеют самостоятельного содержания, но в сочетании с одним или несколькими С. с. образуют сложные выражения, имеющие самостоятельное содержание. С. н. называются также синкатегорематическими.
К С. н. относятся, в частности:
   - скобки, в обычном языке - знаки препинания, указывающие, как объединяются между собой различные части выражения;
   - логические связки, в частности те, которые используются для образования сложных высказываний из простых: "...и...", "...или...", "если..., то...", "...тогда и только тогда, когда...", "ни..., ни...", "не..., а...", "..., но не...", "неверно, что... и...", "неверно, что...";
   - операторы, подобные оператору описания ("тот объект, который ...") и кванторам ("все" и "некоторые").
   Напр., само по себе слово "или" не обозначает никакого объекта. Но в совокупности с двумя (обозначающими) С. с. оно дает новый обозначающий символ: из двух имен "круглое" и "красное" с помощью "или" получается новое имя "круглое или красное",


[310]
из двух высказываний "Письмо отправлено" и "Письмо сожжено" - новое высказывание "Письмо отправлено или сожжено".
   Центральная задача логики - отделение правильных схем рассуждения от неправильных и систематизация первых. Логическая правильность определяется логической формой. Для ее выявления нужно отвлечься от содержательных частей рассуждения (С. с.) и сосредоточить внимание на С. н., представляющих эту форму в чистом виде. Отсюда интерес формальной логики к таким словам, как "и", "или", "если и только если" и т. п.
СИНКАТЕГОРЕМАТИЧЕСКОЕ ВЫРАЖЕНИЕ, см.: Символы собственные и несобственные.
   СИНОНИМИЯ
    - одно из важнейших понятий логической семантики, выражающее тождество значений языковых выражений. Два выражения считаются синонимичными, если имеют одно и то же значение. Это исходное представление о С. уточняется в логической семантике в различных отношениях: 1) по отношению к определенному языку или языкам; 2) по отношению к тем или иным видам языковых выражений (имен, предикатов, предложений и т. п.); 3) по отношению к определенному носителю языка; 4) по отношению к различным видам значения.
   Так, напр., если мы говорим только о предметном значении языковых выражений, т. е. об их денотатах, то два выражения будут синонимичными в том случае, если их денотаты совпадают. Выражения "самая крупная птица на Земле" и "страус" являются с этой точки зрения синонимами. Критерием такой С. будет истинность предложения "Самая крупная птица на Земле является страусом". Данное предложение фактически истинно, что свидетельствует о том, что указанные выражения являются синонимами. Но если под значением мы имеем в виду не только предметное значение, но и смысл языковых выражений, то синонимами мы будем называть лишь такие выражения, у которых совпадают не только денотаты, но и смысл. Критерием такой С. является не просто истинность, но аналитическая истинность предложения, говорящего о тождестве двух выражений. Напр., истинность такого предложения, как "Всякий холостяк неженат", устанавливается не обращением к фактам, а логическим анализом входящих в него выражений, т. е. является аналитической. Следовательно, выражения "холостяк" и "неженат" являются синонимами в этом более строгом смысле.
   СИНТАКСИС (греч. syntaxis - построение, порядок)
    - раздел семиотики, исследующий структурные свойства систем знаков, правила их образования и преобразования, отвлекаясь от их интерпретации. Синтаксисом формализованного языка называют систему пра-

[311]
вил построения выражений этого языка и проверки того, являются ли эти выражения правильно построенными формулами, аксиомами, теоремами, выводами или доказательствами.
   СИНТАКСИЧЕСКАЯ КАТЕГОРИЯ
    - класс однотипных выражений словаря формализованного языка. Этот словарь обычно включает: индивидные знаки - константы и переменные; предикатные выражения; знаки логических связок - отрицания, конъюнкции, дизъюнкции и т. п.; кванторы - общности и существования; пропозициональные переменные (знаки для предложений); вспомогательные символы -скобки, запятые и т. п.
   Этот словарь служит материалом для образования формул и их преобразования.
СЛЕДОВАНИЕ, см.: Логическое следование.
СЛЕДСТВИЕ, см.: Логическое следование.
   СЛОЖНОЕ ВЫСКАЗЫВАНИЕ
    - высказывание, полученное с помощью логических связок из простых высказываний. Наиболее употребительны С. в., образованные с помощью слов: "и", "или", "если, то", "если и только если", "не". Вместо этих слов в логике используются символы: &, v, ->, ?, ~. С. в. А& В называется конъюнкцией ("А и В"), A v В - дизъюнкцией ("А или В"), А -> В - импликацией ("Если A, то В"), А = В - эквивалентностью ("А, если и только если В"), ~ А - отрицанием ("Неверно, что A", или "не-A").
   Установление смысла и способа употребления логических связок, позволяющих образовывать С. в., является задачей наиболее фундаментальной и вместе с тем самой простой части логики - исчисления высказываний.
   СЛУЧАЙНОСТЬ ЛОГИЧЕСКАЯ
    - одна из модальных характеристик высказывания наряду с возможностью, необходимостью и невозможностью; высказывание случайно, когда и оно само, и его отрицание являются возможными.
   Случайно то, что может быть и может не быть. С. не равнозначна возможности, которая не может не быть. С. иногда называют "двусторонней возможностью", т. е. равной возможностью и высказывания, и его отрицания. Логически возможно высказывание, не являющееся внутренне противоречивым. Если не только само высказывание, но и его отрицание не содержат противоречия, высказывание является логически С. Случайно, напр., что все многоклеточные живые существа смертны: ни утверждение этого факта, ни его отрицание не содержат внутреннего (логического) противоречия.
   В соответствии с законами логики ни само случайное высказывание, ни его отрицание не вытекают из данных законов. С.л. мож-


[312]
но сопоставить с физической С., связанной с законами природы. Физически (онтологически, каузально) случайно то, наличие и отсутствие чего не обусловлено законами природы. Напр., эллиптические орбиты планет случайны логически, но не физически; они обусловлены законами небесной механики, но никак не связаны с законами логики.
   С. л. анализируется модальной логикой в связи с понятиями необходимости, возможности, невозможности. К числу законов, говорящих о С. л., относятся следующие:
   С. л. можно определить через логическую необходимость: высказывание случайно, когда ни оно само, ни противоположное высказывание не являются необходимыми. Чаще употребляется, однако, определение С.л. как "двусторонней возможности".
   СМЫСЛ
    - в повседневной речи синоним значения. В логической семантике общее значение языковых выражений расщепляют на две части: предметное значение и С. Предметным значением, денотатом, объемом, экстенсионалом и т. п. некоторого выражения называют тот предмет или класс предметов, которые обозначаются данным выражением. Вместе с тем каждое выражение несет в себе некоторое мысленное содержание, которое и называют С. Понять некоторое выражение значит усвоить его С. Если С. усвоен, то мы знаем, к каким объектам относится данное выражение, следовательно, С. выражения задает его денотат. Два выражения могут иметь одно и то же предметное значение, но различаться по С. Напр., выражения "самый большой город в России" и "город, в котором родился А. С. Пушкин" обозначают один и тот же объект - город Москву, однако обладают разными смыслами. Значением предложения обычно считают его истинностное значение - истину или ложь, С. предложения - выражаемую им мысль. Т. о., все истинные предложения имеют одно и то же значение и различаются только своим С.; то же самое относится к ложным предложениям. Анализом проблем, встающих в связи с попытками точно определить понятие С. для различных типов языковых выражений, занимается специальный раздел логической семантики - теория С. (см.: Имя, Значение, Семантика логическая).
   СОВМЕСТИМОСТИ УСЛОВИЕ
    - требование, чтобы выдвигаемое положение (гипотеза) соответствовало не только тому факти-


[313]
ческому материалу, на базе которого и для объяснения которого оно выдвинуто, но и имеющимся в рассматриваемой области законам, теориям и т. п. Если, к примеру, кто-то предлагает детальный проект вечного двигателя, то его критиков в первую очередь заинтересуют не тонкости конструкции и не ее оригинальность, а то, знаком ли ее автор с законом сохранения энергии.
   Являясь принципиально важным, С. у. не означает, что от каждого нового положения следует требовать полного, пассивного приспособления к тому, что сегодня принято считать "законом". Как и соответствие фактам, соответствие имеющимся теоретическим истинам не должно истолковываться прямолинейно. Может случиться, что новое знание заставит иначе посмотреть на то, что принималось раньше, уточнить или даже что-то отбросить из старого знания. Согласование с принятыми теориями разумно до тех пор, пока оно направлено на отыскание истины, а не на сохранение авторитета старой теории. Выдвигаемая гипотеза должна учитывать . весь относящийся к делу материал и соответствовать ему. Но если конфликт все-таки имеет место, гипотеза должна быть в состоянии доказать несостоятельность того, что раньше принималось за твердо установленный факт или за обоснованное теоретическое положение. Во всяком случае, если этого нет, она должна позволять по-новому взглянуть на исследуемые явления, на факты и их теоретическое осмысление.
   Новое положение должно находиться в согласии не только с хорошо зарекомендовавшими себя теориями, но и с определенными общими принципами, сложившимися в практике научных исследований. Эти принципы разнородны, они обладают разной степенью общности и конкретности, соответствие им желательно, но не обязательно. Наиболее известный из них - принцип простоты, требующий использовать при объяснении изучаемых явлений как можно меньше независимых допущений, причем последние должны быть возможно более простыми. Принцип простоты проходит через всю историю естествознания, в частности, Ньютон выдвигал особое требование "не излишествовать" в причинах при объяснении явлений. Простота не столь необходима, как согласие с опытными данными и соответствие ранее принятым теориям. Но иногда обобщения формулируются так, что точность и соответствие опыту в какой-то мере приносятся в жертву, чтобы достичь приемлемого уровня простоты и в особенности простоты математического вычисления.
   Еще одним общим принципом, часто используемым при оценке выдвигаемых положений, является принцип привычности

[314]
(консерватизма). Он рекомендует избегать неоправданных новаций и стараться, насколько это возможно, объяснять новые явления с помощью уже известных законов. Если требование простоты и консерватизм дают противоположные рекомендации, предпочтение должно быть отдано простоте.
   Принцип универсальности предполагает проверку выдвинутого положения на приложимость его к более широкому классу явлений, чем тот, на основе которого оно было первоначально сформулировано. Если утверждение, верное для одной области, оказывается достаточно универсальным и ведет к новым заключениям не только в исходной, но и в смежных областях, его объективная значимость заметно возрастает. Характерным примером здесь может служить гипотеза квантов, первоначально выдвинутая М.Планком только для объяснения излучения абсолютно черного тела.
   Согласно принципу красоты, хорошая теория должна производить особое эстетическое впечатление, отличаться элегантностью, ясностью, стройностью и даже романтизмом.
   Помимо указанных, имеются многие другие общие принципы, используемые при оценке новых идей и теорий. Среди этих принципов есть не только неясные, но и просто ошибочные требования.
   В каждой области знания имеются, далее, свои стандарты адекватности новой теории. Они являются не только контекстуальными, но и имеют во многом конвенциональный характер. Эти стандарты, принимаемые научным сообществом, касаются общей природы объектов, которые исследуются и объясняются, той количественной точности, с которой это должно делаться, строгости рассуждения, широты данных и т. п.
   Таким образом, новые научные утверждения не оцениваются с помощью универсальных и неизменных критериев. Принимаемые в науке правила обоснования, требование совместимости, общие принципы и стандарты адекватности не являются жесткими. Границы "научного метода" расплывчаты и отчасти конвенциональны. Любое значительное изменение теории ведет к изменению и совокупности тех методологических средств, которые в ней используются.
СОБИРАТЕЛЬНОЕ ПОНЯТИЕ, см.: Понятие.

Страницы: «« « 27   28   29   30   31   32   33   34   35  36   37   38   39   40   41   42   43   44  »
2007-2013. Электронные книги - учебники. Ивин А.А., Словарь по логике