Главная - Справочная литература - Энциклопедии
Брокгауз Ефрон - Энциклопедический словарь Скачать книгу Вся книга на одной странице (значительно увеличивает продолжительность загрузки) Всего страниц: 3534 Размер файла: 25563 Кб Страницы: «« « 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 » »» проходящий через данную точку, через ds, нормаль к поверхности через n и количество электричества, протекающее в элемент времени dt через элемент поверхности через dQ, то мы получаем следующее основное уравнение для установившегося тока: Здесь l коэффициент, который можно назвать удельной электропроводностью. Основное уравнение (1) введено Омом в учение об Э. токе по аналогии с совершенно подобным уравнением, лежащим в основе учения Фурье о распространении тепла по теплопроводности. Заметим, что вопрос о течении электричества в проводнике двух или трех изменений представляет очень большие теоретические затруднения и очень малый практический интерес. Им занимались, между прочим, Кирхгоф и Гельмгольц. Мы разберем только случай течения тока в линейном проводнике, заметив, что линейный проводник не должен представлять собою математическую линию. Линейный проводник - это такой, где в каждом сечении плотность тока всюду одна и та же и притом ток параллелен оси, т. е. перпендикулярен к площади сечения. В таком случае из уравнения (1) и из условия, что, в случае установившегося Э. тока, количество электричества, протекающее в единицу времени через какое-либо сечение, должно быть одно и то же для всех сечений, легко получить следующее уравнение: . (2) Здесь у есть сила тока, т. е. количество электричества, протекающее через данный проводник в единицу времени; V1 - V2 есть разность потенциалов на концах линейного проводника. Знаменатель есть гальваническое сопротивление проводника. Как видно, сопротивление проводника тем больше, чем больше его длина l и чем меньше его сечение s. Величина есть величина, обратная удельной электропроводности. Она носит название удельного сопротивления. Формула (2) и выражает собою закон Ома. Если ток проходит по проводнику однородному, но состоящему из нескольких последовательных частей с сопротивлениями r1, r2, r3, . . . .rn, то сила тока у будет выражаться формулой .(2') Здесь V - потенциал, в начале первого проводника, V2 - потенциал в конце последнего. Если ток проходит по разнородным проводникам, то надо принимать во внимание электродвижущие силы, возникающие в местах соприкосновения разнородных веществ, и формула Ома напишется таким образом: Здесь V1, - потенциал в начале рассматриваемой цепи, а V2 - потенциал в конце ее. Не трудно вывести отсюда, что сила тока в замкнутой цепи, состоящей из элемента и провода, соединяющего полюсы элемента, будет выражаться формулой: где Е - электродвижущая сила элемента, W - сопротивление элемента, R - сопротивление провода. Приложимость закона Ома чрезвычайно велика. Проверки, предпринятый рядом лиц, в общем, подтвердили этот закон. Опыты над Э. током в газах показали, что и при токах в газах не наблюдается пропорциональности между величинами у и Е, как следовало бы по закону Ома. Дж. Дж. Томсон интерпретировал это явление, наблюденное многими лицами. Все вышеизложенное относится к тому случаю, когда оба металла, т. е. полюсы элемента соединяет только один проводник или же ряд последовательно соединенных проводников. Если же ток разветвляется в ряд отдельных проводников, то для определения силы тока в каждой ветви надо пользоваться законами Кирхгофа. Законов Кирхгофа два. 1) Алгебраическая сумма сил токов во всех линейных проводниках, пересекающихся в одной точке, равна нулю. или i1+i2+i3-i4-i5=0 i1+i2+i3= i4+i5 2) В каждом замкнутом контуре, выделенном мысленно из данной сети проводников, алгебраическая сумма, составленная из произведений сил тока в ветвях данного контура на сопротивления в тех же ветвях, равна алгебраической сумме электродвижущих сил, расположенных в ветвях рассматриваемого контура. Sikrk=SEk. На формуле Ома и ее следствиях основаны главнейшие способы определения силы токов, разностей потенциалов и электродвижущих сил и, наконец, удельных сопротивлений и сопротивлений проводников. Заметим, что вышеприведенные выражения для формулы Ома относятся к току уже установившемуся. В момент возникновения тока в проводнике и в момент исчезновения сила тока будет выражаться более сложными формулами, в которых приняты во внимание экстра токи замыкания и соответственно размыкания, возникающие благодаря самоиндукции цепи. Перечисляя в начале статьи главнейшие свойства Э. тока, многим из которых посвящены отдельные статьи, мы, конечно, должны были начать с нагревания проводников. Ток, проходя по проводникам, нагревает их. Количество теплоты, выделяемое данным током в данной проволоке, прямо пропорционально квадрату силы тока и сопротивлению проводника, а также продолжительности прохождения тока. Так формулируется закон Джоуля Ленца. Заметим, что закон Джоуля Ленца очень просто вытекает из закона Ома и из выражения для энергии Э. тока. Работа, которую ток может совершить в единицу времени, пропорциональна произведению из его силы тока на электродвижущую силу А = с. ei. Ток нагревает провод, т. е. его Э. энергия переходит в тепловую. Следовательно, количество теплоты Q, выделенное током в единицу времени, должно быть также пропорционально произведению ei Q=c1ei, но e=ir; следовательно, Q=c1i2r, а это и есть закон Джоуля Ленца. Э. ток обладает известным запасом энергии, и эта энергия чрезвычайно многообразно и легко переходит во все прочие виды энергии. Замечу, что на этом энергетическом взгляде на электричество основана возможность подсчета электродвижущей силы гальванического элемента. В элементе совершается химическая работа. Эта работа переходит в электрическую энергию. Механизм передачи безразличен. Работа полученная определяется работой затраченной. Исходя из подобных соображений, Гельмгольц дал формулу для электродвижущей силы элемента, воспользовавшись для этого принципом свободной энергии, введенным им в термодинамику. Этот подсчет не предрешает никаких теорий о сущности гальванического тока. Основанный исключительно из опыта взятых численных соотношениях, он останется верен при всех теориях. Остается только вкратце рассмотреть различные взгляды на причину электризации при соприкосновении. Таких взглядов существует в сущности два. Одни ученые говорят, что электризация при соприкосновении есть явление физическое. Может быть, при соприкосновении двух металлов Страницы: «« « 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 » »» |
Последнее поступление книг:
![]() (Добавлено: 2011-02-24 16:42:44) ![]() (Добавлено: 2011-02-24 16:39:38) ![]() (Добавлено: 2010-11-08 19:19:32) ![]() (Добавлено: 2010-11-05 01:35:35) ![]() (Добавлено: 2010-03-01 14:28:36) ![]() (Добавлено: 2010-02-06 19:45:20) |