Материалы размещены исключительно с целью ознакомления учащихся ВУЗов, техникумов, училищ и школ.
Главная - Справочная литература - Словари
Ивин А.А. - Словарь по логике

Скачать книгу
Вся книга на одной странице (значительно увеличивает продолжительность загрузки)
Всего страниц: 44
Размер файла: 889 Кб
Страницы: «« « 9   10   11   12   13   14   15   16   17  18   19   20   21   22   23   24   25   26   27  » »»

[127]
ны и теории, невозможна. И., ведущая от единичных утверждений к общим, дает только вероятное, а не достоверное знание.
   Высказывалось предположение, что все "перевернутые" законы логики могут быть отнесены к схемам индуктивного умозаключения. Под "перевернутыми" законами имеются в виду формулы, получаемые из имеющих форму импликации (условного утверждения) законов логики путем перемены мест основания и следствия. К примеру, поскольку выражение "Если р и q, то р" есть закон логики, то выражение "Если р, то р и q" есть схема индуктивного умозаключения. Аналогично для "Если р, то р или q" и "Если р или q, то р" и т. п. Сходно для законов модальной логики: поскольку выражения "Если р, то возможно р" и "Если необходимо р, то р" - законы логики, выражения "Если возможно р, то р" и "Если р, то необходимо р" являются схемами индуктивного рассуждения и т. п. Законов логики бесконечно много. Это означает, что и схем индуктивного рассуждения (индуктивной аргументации) бесконечное число.
Предположение, что "перевернутые" законы логики представляют собой схемы индуктивного рассуждения, наталкивается на серьезные возражения: некоторые "перевернутые" законы остаются законами дедуктивной логики; ряд "перевернутых" законов, при истолковании их как схем И., звучит весьма парадоксально. "Перевернутые" законы логики не исчерпывают, конечно, всех возможных схем 
И 
   ИНДУКЦИЯ МАТЕМАТИЧЕСКАЯ, ПОЛНАЯ МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ
 - средство доказательства общих положений в математике и др. дедуктивных науках. Этот прием опирается на использование двух суждений. Первое представляет собой единичное суждение и наз. базой индукции. В нем доказывается, что 1 обладает некоторым свойством (S(1)). Второе суждение - общее условное. В нем утверждается, что если произвольное число п обладает свойством S (т. наз. индуктивное предположение), то и непосредственно следующее за ним (в натуральном ряду) число n+1 также обладает этим свойством S (т. наз. индукционный шаг). Это т.наз. наследуемость свойства S в натуральном ряду чисел 1, 2, 3, 4, 5, ..., n, n+1 ... Если первое и второе положения верны, то можно сделать заключение, что и все натуральные числа обладают свойством S, что S принадлежит всему бесконечному множеству натуральных чисел.
Символически это доказательство записывается так:
S(1)& "n(S(n)->S(n+1)) ®" mS(m).
   Доказательство некоторого общего математического суждения может быть продемонстрировано последовательностью процедур: из " n(S(n) ->S(n+1)) по правилам логики могут быть получе-

[128]
ны следующие суждения: S(1)->S(2) (1), S(2)->S(3) (2), S(3)->S(4) (3)... и т. д. Поскольку же нам надо 5(1), то из суждения (1) мы получаем по модус поненс S(2); поскольку нам дано S(2), мы из (2) можем получить 5( 3); поскольку нам дано S(3), мы из (3) можем получить 5(4), и т. д. до бесконечности. Это и означает доказанность истинности общего суждения "mS(m).
   ИНДУКЦИЯ НЕПОЛНАЯ
    - индуктивный вывод о том, что всем представителям изучаемого множества принадлежит свойство Р на том основании, что Р принадлежит некоторым представителям этого множества. Так, напр., узнав о том, что инженер А работает продавцом, инженер B работает продавцом и инженер С также работает продавцом, вы можете сделать индуктивный вывод, что все инженеры ныне работают продавцами. Множество инженеров велико, трудно или даже невозможно установить, чем сейчас занимается каждый из них, поэтому ваше индуктивное заключение связано с риском: оно может оказаться ошибочным. Для повышения степени надежности индуктивного вывода используют специальные методы (см.: Индукция научная, Индукции каноны).
   ИНДУКЦИЯ ПОЛНАЯ
    - индукция, в которой делается заключение о том, что всем представителям изучаемого множества принадлежит свойство Р, на основании полученной при опытном исследовании информации о том, что каждому представителю изучаемого множества принадлежит свойство Р. Умозаключения полной индукции являются дедуктивными в том смысле, что заключение в них следует из посылок с логической необходимостью: при истинности посылок, применяя известные правила логики, мы не можем получить ложного заключения.
   ИНДУКЦИЯ ПОПУЛЯРНАЯ
    - наиболее распространенный вид индуктивного вывода, в котором не предпринимается никаких мер для повышения достоверности заключения. Именно так мы чаще всего рассуждаем в повседневной жизни. Напр., столкнувшись с грубостью одного-двух чиновников к.-л. учреждения, мы с легкостью делаем вывод о том, что все сотрудники этого учреждения грубияны, или, купив два-три раза в магазине испорченные консервы, мы заключаем, что все консервы в этом магазине испорчены. Ясно, что такого рода заключения часто оказываются ложными. В таких случаях мы совершаем ошибку поспешного обобщения. Для того чтобы избежать этой ошибки, используют специальные приемы для повышения степени достоверности индуктивного вывода (см.: Индукция научная).
   ИНТЕНСИОНАЛ И ЭКСТЕНСИОНАЛ
    - понятия, введенные австрийским логиком и философом Р. Карнапом для анализа зна -

[129]
чения языковых выражений. Метод И. и Э. представляет собой модификацию и дальнейшую разработку семантической концепции немецкого математика и логика Г. Фреге. Но если для Фреге исходным и основным было понятие имени, то Карнап скорее ориентировался на роль прилагательных - он анализировал предикаты. Утверждение "Сократ - человек" можно трактовать двояко. Можно считать, что это утверждение приписывает Сократу некоторое свойство "быть человеком". В то же время данное утверждение можно рассматривать как говорящее о том, что индивидуум Сократ включается в класс людей. Этот пример показывает, что предикат, в данном случае "человек", может обозначать как свойство, так и класс. Классы и свойства взаимосвязаны: каждое свойство задает некоторый класс и каждому классу соответствует некоторое свойство. Объекты, обладающие свойством "быть человеком", образуют класс людей; с другой стороны, класс людей характеризуется тем, что входящие в него элементы обладают свойством "быть человеком". Класс, задаваемый некоторым свойством, может быть и пустым.
   Большую роль в концепции Карнапа играет понятие эквивалентности. Два класса эквивалентны, если они состоят из одних и тех же элементов. Два предиката эквивалентны, если они обозначают один и тот же класс. Класс, обозначаемый предикатным выражением, называется Э. этого выражения. И. предикатного выражения Карнап называет выражаемое им свойство. Напр., Э. предиката "человек" является класс людей; его И. будет свойство "быть человеком". Предикаты "человек" и "существо, имеющее мягкую мочку уха" будут экстенсионально эквивалентны, т. к. обозначают один и тот же класс. Предикаты "человек" и "существо, способное производить орудия труда" не только экстенсионально, но и интенсионально эквивалентны, т. к. обозначают один и тот же класс и выражают одно и то же свойство.
Поскольку два предложения являются эквивалентными в том случае, когда имеют одинаковое истинностное значение, постольку Э. предложения целесообразно считать его истинностное значение. И. предложения является выражаемое им суждение, мысль. Э. собственного имени Карнап считал предмет, обозначаемый этим именем; И. имени является концепт - индивидуальное понятие. Понятия Э. и И. лежат в основе различения экстенсиональных и интенсиональных контекстов. Экстенсиональными контекстами называют множества утверждений, в которых взаимозаменимы экстенсионально эквивалентные языковые выражения, т. е. которые учитывают лишь Э. выражений. Интенсио-


[130]
нальный контекст допускает замену только интенсионально эквивалентных выражений, т. е. для него важны И. выражений (см.: Имя, Смысл, Значение).
   ИНТЕРПРЕТАЦИЯ (от лат. interpretatio - разъяснение, истолкование)
    - в логике приписывание некоторого содержательного смысла, значения символам и формулам формальной системы; в результате формальная система превращается в язык, описывающий ту или иную предметную область. Сама эта предметная область и значения, приписываемые символам и формулам, также
наз. И.
   Рассмотрим обычное построение исчисления высказываний.
   Сначала задается список исходных с и м в о л о в: А, В, С, ...; ~, &, U®,), (. Затем устанавливаются правила построения формул:
1. Отдельная буква из числа А, В, С,... есть формула.
2. Если х есть формула, то ~ х тоже формула.
3. Если х и у - формулы, то х&у, xvу, х->у тоже будут формулами.
   К этому добавляются правила, позволяющие из одних формул получать другие. В частности, некоторые формулы, построенные в соответствии с правилами построения, можно принять в качестве аксиом, добавить к ним правило подстановки, разрешающее на место одной правильно построенной формулы подставлять другую правильно построенную формулу, и правило отделения: из формул х -> у и х можно получить формулу у.
  Такое синтаксическое построение формальной системы представляет собой просто игру с символами, когда мы комбинируем символы в соответствии с правилами, соединяем их, разъединяем, из одних получаем другие и т. п. Для того чтобы система приобрела смысл, стала языком, описанием каких-то объектов, связей и отношений между объектами, нужно придать ей И. Это делается следующим образом.
   Сначала приписывается значение исходным символам. Будем считать, что символы А, В, С, ... представляют предложения, которые могут быть истинными или ложными. Истинность или ложность сложных формул устанавливается следующим образом:
   Если формула х истинна, то формула ~ х ложна, если формула х ложна, то формула ~ х истинна.
   Формула х&у истинна только в том случае, если х истинна и у истинна; во всех остальных случаях формула х & у ложна.
   Формула xvy ложна только в том случае, если х ложна и у ложна; во всех остальных случаях формула х v у истинна.
   Формула х -> у ложна только в том случае, если х истинна, а у ложна; во всех остальных случаях формула х -> у истинна.

[131]
   После И. формул синтаксической системы она становится системой предложений, обозначающих истину или ложь, а правила преобразования одних формул в другие превращаются в правила вывода одних предложений из других. Подставляя в формулы конкретные истинные или ложные предложения, мы можем устанавливать между ними разнообразные логические отношения. Можно придать исходным символам и другую И., напр. считать, что А, В, С, ... обозначают события, а символ "®" выражает причинную связь событий. Тогда выражение "А®В" приобретает такой смысл: событие A причинно влечет событие В.
   Если в формальной системе имеются знаки для индивидуальных переменных, скажем, х, у, z, ...;, для предикатных выражений -Р, Q, ...; для кванторов -", $, то мы можем образовать формулы вида"хР(х) и $хР(х). Для И. таких формул вводят некоторую область объектов, по которым пробегают индивидные переменные, и свойства этих объектов, которые обозначаются предикатными выражениями. Тогда предложение вида"хР(х) считается истинным, если все объекты данной области обладают свойством Р. Предложение вида$хР(х) истинно, если хотя бы один объект из нашей объектной области обладает свойством Р.
   В отличие от формальных логических систем, в содержательных естественнонаучных и математических теориях всегда подразумевается некоторая И.: в таких теориях используются лишь осмысленные выражения, т. е. смысл каждого выражения предполагается заранее известным. В общем случае понятия и предложения естественнонаучных теорий интерпретируются посредством образов сознания, идеальных объектов, совокупность которых должна быть адекватна интерпретируемой теории относительно описываемых свойств объектов. И. теоретических построений развитых областей научного знания носит, как правило, опосредованный характер и включает в себя многоступенчатые, иерархические системы промежуточных И. Связь начального и конечного звеньев таких иерархий обеспечивается тем, что И. интерпретаций к.-л. теории дает и непосредственную ее И. В математике интерпретируемость различных систем аксиом с помощью других аксиоматических теорий служит традиционным средством установления их относительной непротиворечивости (начиная с доказательства непротиворечивости неевклидовой геометрии Лобачевского посредством ее И. в терминах обычной геометрии Евклида).
   В повседневном языке И. называют истолкование, раскрытие смысла того или иного положения, текста, художественного про-


[132]
изведения. Однако в процессе И. текста или музыкального произведения интерпретатор - литературовед, режиссер, исполнитель всегда вносит в интерпретируемый материал некоторый личностный смысл, истолковывает его по-своему. Это служит основой множественности И. в искусстве и литературе.
   ИНТЕРСУБЪЕКТИВНЫЙ (от лат. inter - между)
    - межличностный, общий, общедоступный, в противоположность личному, индивидуальному, уникальному. В логико-методологической литературе понятие интерсубъективности получило широкое распространение в связи с программой эмпирического обоснования науки, выдвинутой представителями логического позитивизма в 20-х годах XX в.
   Эмпирическое обоснование науки, по мнению логических позитивистов, должно состоять в логическом сведении всех научных понятий и утверждений к таким понятиям и предложениям, которые непосредственно выражают чувственные переживания субъекта, напр. "красный", "теплый", "Я чувствую боль" и т. п. Непосредственная связь с чувственным опытом обеспечивает осмысленность понятий и несомненную достоверность предложений. Однако если содержание понятий и предложений определяется только чувственным опытом субъекта, то каждый человек образует свой собственный эмпирический язык, выражающий его
собственные чувства и переживания. Эмпирические предложения, выражающие чувственный опыт одного человека, будут непонятны другому человеку, чувственный опыт которого отличается от опыта первого. Эмпирические языки, значения понятий и предложений при таком подходе оказываются субъективными. Поэтому встает вопрос отыскания или построения И. языка, слова и предложения которого были бы понятны всем людям и который вместе с тем был бы связан с чувственным восприятием и мог служить эмпирическим базисом науки. Таким языком был признан фрагмент повседневного языка, относящийся к чувственно воспринимаемым объектам и их свойствам.
   ИНТУИТИВНАЯ ЛОГИКА
    - интуитивные представления о правильности рассуждений, сложившиеся стихийно в процессе повседневной практики мышления. И. л., как правило, успешно справляется с встающими перед нею задачами, но совершенно недостаточна для анализа и критики неправильных рассуждений. Правильно ли рассуждает человек, когда говорит: "Если бы барий был металлом, он проводил бы электрический ток; барий проводит электрический ток, следовательно, он металл"? Чаще всего на основе логической интуиции отвечают: правильно, барий ме-

[133]
талл и он проводит ток. Этот ответ, однако, неверен. Логическая правильность, как гласит теория, зависит только от способа связи утверждений. Она не зависит от того, истинны используемые в выводе утверждения или нет. Хотя все три утверждения, входящие в рассуждение, верны, между ними нет логической связи. Рассуждение построено по неправильной схеме: "Если есть первое, то есть второе; второе есть; значит, есть и первое". Такая схема от истинных исходных положений может вести не только к истинному, но и к ложному заключению, она не гарантирует получения новых истин из имеющихся. В рассуждении "Если у человека повышенная температура, он болен; человек болен; следовательно, у него повышенная температура" обе посылки могут быть истинными, а заключение ложным: многие болезни протекают без повышения температуры. Другой пример: "Если бы шел дождь, земля была бы мокрой; но дождя нет; значит, земля не мокрая". Это рассуждение интуитивно обычно оценивается как правильное, но достаточно небольшого рассуждения, чтобы убедиться, что это не так. Верно, что в дождь земля всегда мокрая; но если дождя нет, из этого вовсе не следует, что она сухая: земля может быть просто полита или быть мокрой после таяния снега. Рассуждение опять-таки идет по неправильной схеме: "Если первое, то второе; но первого нет; значит, нет и второго". Эта схема может привести от истинных посылок к ошибочному заключению: "Если у человека повышенная температура, он болен; у него нет повышенной температуры; значит, он не болен". Эти простые примеры показывают, что логика, усвоенная стихийно, даже в обычных ситуациях может оказаться ненадежной.
   Навык правильного мышления не предполагает к.-л. теоретических знаний, умения объяснить, почему что-то делается именно так, а не иначе. К тому же сама И. л., как правило, беззащитна перед лицом критики.
   Усвоение языка есть одновременно и усвоение общечеловеческой, не зависящей от конкретных языков логики. Без нее, как и без грамматики, нет, в сущности, владения языком. В дальнейшем стихийно сложившееся знание грамматики систематизируется и шлифуется в процессе школьного обучения. На логику же специального внимания обычно не обращается, ее совершенствование остается стихийным процессом. Нет поэтому ничего странного в том, что, научившись на практике последовательно и доказательно рассуждать, человек затрудняется ответить, какими принципами он при этом руководствуется. Почувствовав сбой в рассуждении, он оказывается, как правило, не способным объяс-


[134]
нить, какая логическая ошибка допущена. Это под силу только теории логики.
   ИНТУИЦИОНИЗМ
    - направление в обосновании математики и логики, согласно которому конечным критерием приемлемости методов и результатов этих наук является наглядно-содержательная интуиция. Вся математика должна опираться, согласно И., на интуитивное представление ряда натуральных чисел и на принцип математической индукции, истолковываемый как требование действовать последовательно, шаг за шагом; допускаются лишь конструктивные доказательства существования рассматриваемого объекта, указывающие способ его построения.
  Создателем И. является голландский математик Л. Э. Я. Брауэр (1881 - 1966). В начале XX в. он выдвинул программу радикальной перестройки математики, противопоставив ее концепции сведения математики к логике (см.: Логицизм) и истолкованию математики исключительно как языка математических символов (см.: Формализм).
   Представители И. полагают, что чистая математика является мыслительной активностью, не зависящей от языка, ее объект -нелингвистические математические конструкции. Язык служит лишь для сообщения математических идей, математика не сводится к языку и тем более не может быть истолкована как особый язык. Предметом исследования (математической) логики является математический язык, более или менее адекватно передающий математические построения. Логика вторична по отношению к математике, последняя не может быть обоснована с помощью логических средств.
   Основной тезис интуиционистов гласит, что существование в математике - это то же самое, что конструктивность, или "построяемость". Из существования математического объекта вытекает его непротиворечивость, но не наоборот: не каждый непротиворечивый объект существует. Построение является единственным средством обоснования в математике.
   Интуиционисты подвергли резкой критике закон исключенного третьего, закон (снятия) двойного отрицания и ряд других законов логики классической. Согласно Брауэру, логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Закон исключенного третьего, верный в случае конечной математики, неприменим в рассуждениях о бесконечных множествах. Объекты бесконечного множества невозможно перебрать. Если в процессе перебора не удалось найти элемент с требуемым свойством, ни утверждение о существовании такого объекта,

[135]
ни отрицание этого утверждения не является истинным. Критика И. классической логики привела к созданию нового направления в логике - интуиционистской логики.
   Одновременно с Брауэром сомнения в универсальной приложимости закона исключенного третьего высказал рус. философ и логик Н. А. Васильев (1880-1940). Он ставил своей задачей построение такой системы логики, в которой была бы ограничена не только сфера действия этого закона, но и непротиворечия закона. Казавшиеся парадоксальными, идеи Васильева не были в свое время оценены по достоинству.
   ИНТУИЦИОНИСТСКАЯ ЛОГИКА
    - одна из наиболее важных ветвей логики неклассической, имеющая своей философской предпосылкой программу интуиционизма. Выдвигая на первый план математическую интуицию, интуиционисты не придавали большого значения систематизации логических правил. Только в 1930 г. голландский математик и логик А. Гейтинг - ученик создателя интуиционизма Л. Брауэра - дал аксиоматическую формулировку И. л., подчеркнув, что "интуиционизм развивается независимо от формализации, которая может идти только по следам математической конструкции". В И. л. не действует закон исключенного третьего, а также ряд других законов логики классической, позволяющих доказывать существование объектов, которые невозможно реализовать или вычислить. В числе таких законов - закон (снятия) двойного отрицания и закон приведения к абсурду.
   Отбрасывание закона исключенного третьего не означает принятия отрицания этого закона; напротив, И. л. утверждает, что отрицание отрицания этого закона (его двойное отрицание) является верным. Отбрасывание не должно пониматься также как введение какого-то третьего истинностного значения, промежуточного между истиной и ложью.
   В классической логике центральную роль играет понятие истины. На его основе определяются логические связки, позволяющие строить сложные высказывания. В И. л. смысл связок задается путем указания тех необходимых и достаточных условий, при которых может утверждаться сложное высказывание.
   Если р и q - некоторые высказывания, то их конъюнкцию (р и q) можно утверждать, только если можно утверждать как р, так и q. Дизъюнкцию (р или q) можно утверждать тогда и только тогда, когда можно утверждать хотя бы одно из высказываний р и q. Математическое высказывание р можно утверждать только после проведения некоторого математического построения с определенными свойствами; соответственно отрицание р можно утверждать, если


[136]
и только если имеется построение, приводящее к противоречию предположение о том, что построение р выполнено. Понятие противоречия здесь принимается в качестве неопределяемого, практически противоречие всегда можно привести к форме 1 = 2. Импликацию (если р, то q) можно утверждать, только если имеется такое построение, которое, будучи объединено с построением р, автоматически дает построение q.
   Интуиционистское понимание логических связок таково, что из доказательства истинности высказывания всегда можно извлечь способ построения объектов, существование которых утверждается.
   И. л. является единственной из неклассических логик, в рамках которой производилась достаточно последовательная и глубокая разработка многих разделов математики. Эта логика позволяет тонко и точно исследовать трудный и важный вопрос о характере существования объектов, исследуемых в математике.
   Идеи, касающиеся ограниченной приложимости законов исключенного третьего, снятия двойного отрицания, редукции к абсурду и связанных с ними способов математического доказательства, разрабатывались рус. математиками А. Н. Колмогоровым (1903-1985), В. И. Гливенко (1897-1910), А. А. Марковым (1903-1979), Н. А. Шаниным (р. 1919) и др. В результате критического переосмысления основных принципов И.л. возникла конструктивная логика, также считающая неправильным перенос ряда логических принципов, применимых в рассуждениях о конечных множествах, на область бесконечных множеств.
   ИНТУИЦИЯ (от лат. intuitio - пристальное, внимательное всматривание, созерцание)
    - способность к прямому усмотрению истины, постижению ее без всякого рассуждения и доказательства. Для И. обычно считаются типичными неожиданность, невероятность, непосредственная очевидность и неосознанность пути, ведущего к ее результату. С "непосредственным схватыванием", внезапным озарением и прозрением много неясного и спорного. Иногда даже говорится, что И. - это куча хлама, в которую сваливаются все интеллектуальные механизмы, о которых не известно, как их проанализировать. И., несомненно, существует и играет заметную роль в познании. Далеко не всегда процесс научного и тем более художественного творчества и постижения мира осуществляется в развернутом, расчлененном на этапы виде. Нередко человек охватывает мыслью сложную ситуацию, не отдавая отчета во всех ее деталях, да и просто не обращая внимания на них. Особенно наглядно это проявляется в военных сражениях, при постановке диагноза, при установлении виновности и невиновности и т. п.

137
   Из многообразных трактовок И. можно эскизно наметить следующие:
   >> И. Платона как созерцание стоящих за вещами идей, приходящее внезапно, но предполагающее длительную подготовку ума;
   >> интеллектуальная И. Декарта как понятие ясного и внимательного ума, настолько простое и отчетливое, что не оставляет никакого сомнения в том, что мы мыслим;
   >> И. Спинозы, являющаяся "третьим родом" познания (наряду с чувствами и разумом) и схватывающая сущность вещей;

Страницы: «« « 9   10   11   12   13   14   15   16   17  18   19   20   21   22   23   24   25   26   27  » »»
2007-2013. Электронные книги - учебники. Ивин А.А., Словарь по логике