Материалы размещены исключительно с целью ознакомления учащихся ВУЗов, техникумов, училищ и школ.
Главная - Справочная литература - Словари
Ивин А.А. - Словарь по логике

Скачать книгу
Вся книга на одной странице (значительно увеличивает продолжительность загрузки)
Всего страниц: 44
Размер файла: 889 Кб
Страницы: «« « 10   11   12   13   14   15   16   17   18  19   20   21   22   23   24   25   26   27   28  » »»

   >> чувственная И. Канта и его более фундаментальная чистая И. пространства и времени, лежащая в основе математики;
   >> художественная И. Шопенгауэра, улавливающая сущность мира как мировую волю;
   >> И. философии жизни (Ницше), несовместимая с разумом, логикой и жизненной практикой, но постигающая мир как форму проявления жизни;
   >> И. Бергсона как непосредственное слияние субъекта с объектом и преодоление противоположности между ними;
   >> моральная И. Мура как непосредственное видение добра, не являющегося "естественным" свойством вещей и не допускающего рассудочного определения;
   >> чистая И. времени Брауэра, лежащая в основе деятельности мысленного конструирования математических объектов;
   >> И. Фрейда как скрытый, бессознательный первоисточник творчества;
   >> И. Полани как спонтанный процесс интеграции, непосредственного внезапного усмотрения целостности и взаимосвязи в ранее разрозненном множестве объектов.
   Этот перечень может быть продолжен. В сущности, едва ли не у каждого крупного философа и психолога имеется свое собственное понимание И. В большинстве случаев эти понимания не исключают друг друга.
   И. как "прямое видение истины" не является чем-то сверхразумным. Она не идет в обход чувств и мышления и не составляет особого рода познания. Ее своеобразие состоит в том, что отдельные звенья процесса мышления проносятся более или менее бессознательно и запечатлевается только итог мысли - внезапно открывшаяся истина.
   Существует давняя традиция противопоставлять И. логике. Нередко И. ставится выше логики даже в математике, где роль строгих доказательств особенно велика. Чтобы усовершенствовать метод в математике, полагал Шопенгауэр, необходимо прежде всего


[138]
отказаться от предрассудка - веры в то, будто доказанная истина выше интуитивного знания. Паскаль проводил различие между "духом геометрии" и "духом проницательности". Первый выражает силу и прямоту ума, проявляющиеся в железной логике рассуждений, второй - широту ума, способность видеть глубже и прозревать истину как бы в озарении. Для Паскаля даже в науке "дух проницательности" независим от логики и стоит неизмеримо выше ее. Еще раньше некоторые математики утверждали, что интуитивное убеждение превосходит логику, подобно тому как ослепительный блеск Солнца затмевает бледное сияние Луны.
   Неумеренное возвеличение И. в ущерб строгому доказательству неоправданно. Логика и И. не исключают и не подменяют друг друга. В реальном процессе познания они, как правило, тесно переплетаются, поддерживая и дополняя друг друга. Доказательство санкционирует и узаконивает достижения И., оно сводит к минимуму риск противоречия и субъективности, которыми всегда чревато интуитивное озарение. Логика, по выражению математика Г.Вейля, - это своего рода гигиена, позволяющая сохранить идеи здоровыми и сильными. И. отбрасывает всякую осторожность, логика учит сдержанности. Только проведенное шаг за шагом логическое доказательство делает завоевания И. объективно установленным результатом.
   Уточняя и закрепляя результаты И., логика сама обращается к ней в поисках поддержки и помощи. Логические принципы не являются чем-то заданным раз и навсегда. Они формируются в многовековой практике познания и преобразования мира и представляют собой очищение и систематизацию стихийно складывающихся "мыслительных привычек". Вырастая из аморфной и изменчивой пралогической И., из непосредственного, хотя и неясного "видения логического", эти принципы всегда остаются связанными с изначальным интуитивным "чувством логического". Не случайно строгое доказательство ничего не значит даже для математика, если результат остается непонятным ему интуитивно.
  Логика и И. не должны противопоставляться друг другу, каждая из них необходима на своем месте. Внезапное интуитивное озарение способно открыть истины, вряд ли доступные последовательному и строгому логическому рассуждению. Однако ссылка на И. не может служить твердым и тем более последним основанием для принятия каких-то утверждений. И. приводит к интересным новым идеям, но она нередко порождает также ошибки, вводит в заблуждение. Интуитивные догадки субъективны и неустойчивы, они нуждаются в логическом обосновании. Чтобы убедить в инту-

[139]
итивно схваченной истине как других, так и самого себя, требуется развернутое рассуждение, доказательство (см.: Аргументация контекстуальная).
   ИРРАЦИОНАЛЬНОЕ (от лат. irrationalis - неразумный, бессознательный)
    - находящееся на пределами разума, противоречащее логике. Обычно противопоставляется рациональному как разумному, целесообразному, обоснованному.
   Понимание И. зависит от определения понятия рационального. Если рациональное определяется как соответствующее законам разума, т. е. законам логики, то И. можно назвать то, что нарушает законы логики. Напр., если признается истинной конъюнкция двух предложений "A&B" и признается истинным предложение "A", то это рационально. Если же, наряду с признанием истинности конъюнкции "А&В", признается ложность предложения "A", то данное рассуждение И.: в нем нарушено правило логики, согласно которому из истинности конъюнкции следует истинность каждого ее элемента. Можно дать рациональному более широкое определение - как соответствие не только законам логики, но и некоторым методологическим нормам, правилам, стандартам деятельности и т. п. Соответственно И. будет рассуждение или поведение, нарушающее эти нормы и правила.
   Иногда рациональное определяют как целесообразное, т. е. как то, что приводит к намеченной цели. В этом случае И. будет все то, что не приближает нас к цели или даже делает цель еще более недостижимой. При таком понимании квалификация каких-то действий как рациональных или И. в значительной мере зависит от условий деятельности. Напр., в комнате душно, и вы хотите ее проветрить. Для этого вы открываете окно. Если на улице прохладно, то вы достигаете своей цели: свежий воздух ворвется в комнату и дышать станет легче. Но если на улице жарко, то, открыв окно, вы ухудшите положение. В одной ситуации было рационально открыть окно, в другой - И. (см.: Рациональность).
ИСКЛЮЧЕННОГО ТРЕТЬЕГО ЗАКОН, см.: Закон исключенного третьего.
   ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
    - метафорическое обозначение области исследований, цель которых - создание технических систем, способных решать задачи невычислительного характера и выполнять действия, требующие переработки содержательной информации и считающиеся прерогативой человеческого мозга. К числу таких задач относятся, напр., задачи на доказательство теорем, игровые задачи (скажем, при игре в шахматы), задачи по переводу с одного языка на другой, по сочинению музыки, распозна-


[140]
ванию зрительных образов, решению сложных творческих проблем науки и общественной практики. Одной из важных задач И. и. является создание интеллектуальных роботов, способных автономно совершать операции по достижению целей, поставленных человеком, и вносить коррективы в свои действия.
   ИСТИНА
    - мысль или высказывание, соответствующие своему предмету. Мысль соответствует своему предмету, если представляет его таким, каков он есть на самом деле, в реальности. Напр., мысль о том, что Иртыш есть приток Оби, соответствует своему предмету, ибо действительно Иртыш вливается в Обь; а мысль о том, что бананы растут на березе, искажает реальное положение дел, поэтому является ложью.
   Вопрос об И. принадлежит сфере философии. Для логики важно иметь в виду следующее.
   Реальность, относительно которой наши мысли оцениваются как истинные или ложные, не обязательно должна быть только физической реальностью, это может быть реальность художественного вымысла или идеализированных объектов. Скажем, утверждение "Отелло любил Дездемону" истинно, а утверждение "Гамлет был женат" ложно в мирах, создаваемых текстом шекспировских пьес. Здесь следует обратить внимание на то, что понятие И. говорит о соответствии мысли своему объекту, но никак не касается природы этих объектов.
   И. объективна в том смысле, что истинность или ложность некоторой мысли не зависит от воли и желания людей. Даже если все человечество принимает некоторую мысль, считает ее истинной, мысль может оказаться ложной, и наоборот. То, что некоторая мысль соответствует или не соответствует своему предмету, определяется предметом, а не субъектом познания. Я могу горячо верить в то, что на Луне живут разумные существа, при определенных условиях могу увлечь своей верой миллионы других людей, но, если в действительности на Луне нет разумных существ, эта мысль будет ложной.
   Логика не занимается установлением истинности и ложности наших мыслей. Это дело конкретных наук. Однако понятие И. играет в логике чрезвычайно важную роль: именно с его помощью определяются фундаментальные для логики понятия логического вывода и логического следования.
   ИСТИННОСТНОЕ ЗНАЧЕНИЕ
    - одна из возможных характеристик высказывания с точки зрения соответствия его описываемому фрагменту действительности. Если допускается, что каждое высказывание является либо истинным, либо ложным (т. е. что оно

[141]
либо соответствует действительности, либо не соответствует ей), говорят, что высказывание имеет одно из двух значений истинности. Данное допущение, именуемое двузначности (бивалентности) принципом, лежит в основе логики классической. В многозначной логике допускается, что высказывание может принимать одно из и (n>2) значений истинности. Так, в трехзначной логике, опирающейся, соответственно, на принцип трехзначности, высказывание принимает одно из трех И. з.: истинно, ложно и неопределенно; в разных системах этой логики И. з. "неопределенно" понимается по-разному.
   ИСЧИСЛЕНИЕ
    - основанный на четких правилах формальный аппарат оперирования со знаниями определенного вида, позволяющий дать точное описание некоторого класса задач, а для отдельных подклассов этого класса - и алгоритм решения.
   В математической логике понятие об И. подверглось уточнению и более строгой формализации. Логическое И. строится на базе некоторого формализеванного языка. Задается набор исходных символов, из которых с помощью четко определенных правил строятся формулы рассматриваемого И. Некоторые из этих формул выбираются в качестве аксиом, из которых с помощью правил преобразования получают новые формулы, называемые теоремами. После того как к И. добавляется интерпретация, придающая значение ее исходным символам и формулам, И. превращается в язык, описывающий некоторую предметную область (см.: Исчисление высказываний, Исчисление классов, Исчисление предикатов и т. п.).

[143]
 
К
   КАВЫЧКИ
    - в грамматике естественного языка парный знак препинания (обычно ,, " или " "), используемый для выделения прямой речи или отдельных выражений, которые употребляются не в привычном смысле.
   В логике К. используются для того, чтобы отличить автономное употребление выражений от обычного. Напр., в предложениях "Москва расположена на Москве-реке" и "Москва состоит из шести букв" слово "Москва" в первом предложении употребляется обычно, а во втором - автонимно, т. е. в качестве имени самого себя. Чтобы избежать смешения обычного и автонимного употребления выражений, используются К., т. наз. "кавычковые имена". Второе предложение следует записать так: ""Москва" состоит из шести букв". В естественном языке несложно различить обычное употребление выражений и их автонимное употребление. Однако в логике, когда приходится говорить о выражениях некоторого языка, возможна путаница, приводящая к ошибкам.
   КАТЕГОРИЧЕСКОЕ СУЖДЕНИЕ
    (в традиционной логике) -суждение, в котором предикат утверждается или отрицается относительно субъекта без формулирования к.-л. условий и при этом исключаются к.-л. альтернативные предикаты. К.с. имеют вид: "S есть (не есть) Р" и относятся к классу простых суждений. К. с. обычно противопоставляются условным и разделительным суждениям.
   КАТЕГОРИЯ (от греч. kategoria - высказывание, обвинение, признак)
    - предельно общее фундаментальное понятие, отражающее наиболее существенные, закономерные связи и отношения реальной действительности и познания. Будучи формами и устойчивыми организующими принципами процесса мышления, К. воспро-

изводят свойства и отношения бытия и познания во всеобщем и наиболее концентрированном виде.
   Характеристику некоторых особенностей К. можно дать, опираясь на операцию обобщения понятий. Почти для каждого видового понятия можно найти более широкое по объему родовое понятие, напр. "береза" - "дерево", "человек" - "млекопитающее", "медь" - "металл". Эти родовые понятия могут включаться в еще более широкие по объему понятия: "дерево" - "растение", "млекопитающее" - "животное", "металл" - "вещество" и т. п. К К. относятся предельно широкие по своему объему понятия, т. е. те, для которых нельзя найти более широкие родовые понятия. Как правило, К. являются философские понятия - "бытие", "субъект", "сущность", "качество", "количество", "материя", "сознание" и т. п.
   В каждой конкретной науке имеется своя система К. В логике к числу наиболее общих и фундаментальных понятий относятся понятия логического вывода, суждения, умозаключения, индукции, дедукции и др. К. изменяются вместе с развитием нашего познания: обогащается их содержание, изменяются взаимосвязи между К., меняется их состав и т. п.
КАУЗАЛЬНАЯ МОДАЛЬНОСТЬ, см.: Онтологическая модальность.
   КЛАСС, МНОЖЕСТВО (В ЛОГИКЕ И МАТЕМАТИКЕ)
    - конечная или бесконечная совокупность объектов, выделенная по общему для них признаку (свойству или отношению), мыслимая как нечто целое. Объекты, составляющие К., называются его элементами. Примером К. (м.) могут быть следующие: "реки России", "четные числа". Первый К. является конечным, второй - бесконечным. Элементами первого К. являются отдельные реки - Волга, Ока, Енисей и др. Элементами второго К. являются числа - 0, 2, 4, 6, 8 и т. д. до бесконечности. Элементами К. могут быть, в свою очередь, К. Так, элементами К. "типы животных" являются К. простейших животных, губок, кишечнополостных и т. д. К. бывают единичными, общими и нулевыми (пустыми). Единичные К. состоят из одного элемента (напр., "самая большая река в Европе"); общие К. состоят из двух и более элементов (напр., "химический элемент", "машина"); нулевые К. не включают в свой состав ни одного элемента (напр., "круглый квадрат", "число меньше двух и больше трех").
   Объект определенной области принадлежит данному К., является его элементом, если он обладает признаками, по которым образован К. В противном случае он исключается из К. Так, если нам дана область натуральных чисел и мы хотим выделить те из них, которые являются элементами К. простых чисел, то в К.. простых чисел войдет, напр., число 7, т. к. оно обладает свойством

[144]
простых чисел ("7 - простое число" - истина), а число 8 не войдет (т. к. "8 - простое число" - ложь). Образуя К. к.-л. объектов, мы начинаем их рассматривать лишь под углом зрения некоторых свойств, от иных же свойств абстрагируемся. Так, образуя К. квадратов, мы учитываем такие свойства плоских многоугольников, как "быть четырехугольником", "иметь равные углы", "иметь равные стороны". Площадь, длина сторон и т. п. не учитываются. Это означает, что отдельные квадраты, составляющие К.квадратов, отождествляются нами, становятся неразличимыми в некоторых свойствах (см.: Абстракция).
   Общее понятие о К. возникает как результат абстракции не только от природы его элементов, но и от их порядка.
   КЛАССИФИКАЦИЯ
    - многоступенчатое, разветвленное деление логического объема понятия. Результатом К. является система соподчиненных понятий: делимое понятие является родом, новые понятия - видами, видами видов (подвидами) и т. д. Наиболее сложные и совершенные К. дает наука, систематизирующая в них результаты предшествующего развития к.-л. отраслей знания и намечающая одновременно перспективу дальнейших исследований. Блестящим примером научной К. является периодическая система элементов Д. И. Менделеева, фиксирующая закономерные связи между химическими элементами и определяющая место каждого из них в единой таблице. Эта система позволила сделать подтвердившиеся вскоре прогнозы относительно неизвестных еще элементов. Большую роль в развитии биологии сыграла К. животных и растений К. Линнея. Хорошо известна К. элементарных частиц, даваемая современной физикой.
   К. подразделяется на е с т е с т в е н н у ю и искусственную. В качестве основания первой берутся существенные признаки, из которых вытекают многие производные свойства упорядочиваемых объектов. Искусственная К. использует для упорядочивания объектов несущественные их признаки, вплоть до ссылки на начальные буквы имен этих объектов (алфавитные указатели, именные каталоги в библиотеках и т. п.).
   Было время, когда естественная К. объявлялась высшей целью изучения природы и венцом научного ее познания. В XX в. представление о роли К. в процессе познания заметно изменилось. Противопоставление естественной и искусственной К. во многом утратило свою остроту. Далеко не всегда удается существенное четко отделить от несущественного, особенно в обществе и живой природе; кроме того, существенное в одном отношении может оказаться гораздо менее важным в другом отношении. Поэтому роль К., в


[145]
том числе естественной, не должна переоцениваться, тем более не должно преувеличиваться ее значение в области сложных и динамичных социальных объектов и явлений. Как стало очевидным еще в прошлом веке, абсолютно резкие разграничительные линии несовместимы с теорией развития.
КЛАССИЧЕСКАЯ ЛОГИКА, см.: Логика классическая.
   КОНВЕНЦИЯ (от лат. conventio - соглашение)
    - договор, соглашение, условие. Разнообразные К. играют значительную роль в науке и в повседневной жизни. Спор, дискуссия, коллективное обсуждение к.-л. проблем всегда опираются на соглашение относительно значений используемых слов, терминов, выражений. При построении аксиоматических систем символической логики аксиомы часто принимаются конвенционально в зависимости от удобства, простоты или конкретных целей построения. Для описания пространственных свойств объективного мира ученые часто по соглашению используют ту или иную систему геометрии.
   КОННОТАЦИЯ (от лат. connotatio - добавочное значение)
    - дополнительные черты, оттенки, сопутствующие основному содержанию понятия, суждения. В обыденной речи и в художественном творчестве к основному семантическому значению понятий и суждений часто добавляются дополнительные оттенки, служащие для выражений эмоционального или оценочного отношения говорящего к предмету речи. Напр., слова "военные" и "военщина" совпадают по своему семантическому значению, однако во втором слове присутствует негативный оттенок, которого нет в первом слове.
   КОНСТРУКТИВНАЯ ЛОГИКА
    - одно из направлений современной логики, изучающее рассуждения о конструктивных объектах и процессах. Конструктивные объекты представляют собой или отдельные, ясно отличаемые друг от друга знаки, или последовательности таких знаков, получаемые посредством некоторого конструктивного процесса, протекающего по четким дискретным правилам. Примером конструктивного объекта могут служить легко отождествляемые и различаемые буквы к.-л. алфавита; конструктивный процесс - построение из них слов по однозначно определенным правилам. В конструктивном процессе используется абстракция потенциальной осуществимости, позволяющая отвлекаться от реальных конструктивных возможностей человека, связанных с ограниченностью его деятельности в пространстве и времени. Можно, напр., рассуждать о сколь угодно длинных, но конечных формулах, которые реально никогда не смогут быть записаны. Вместе с тем в таком процессе не используется абстракция актуальной бесконечности, когда невозможность


[146]
полного обозрения к.-л. бесконечного образования не учитывается. Бесконечное множество, напр. множество всех натуральных чисел, нельзя рассматривать как единый, завершенный объект. Существование конструктивного объекта считается доказанным лишь в том случае, если указан способ потенциально осуществимого его построения (конструирования).
   Ограничение рассуждений конструктивными объектами и процессами ведет к отказу от закона исключенного третьего в применении к бесконечным множествам. Отвергаются также закон снятия двойного отрицания (см.: Закон двойного отрицания), закон Клавия, некоторые варианты косвенного доказательства и др.
   Термином "К. л." иногда обозначается интуиционистская логика. Чаще под К. л. понимается логическая теория, совпадающая по классу доказуемых формул с интуиционистской логикой, но не обращающаяся к представлению об "изначальной интуиции" и использующая при задании смысла логических операций понятие алгоритма и некоторые особые положения о конструктивных процессах (А. А. Марков, Н. А. Шанин и др.).
   КОНТЕКСТ (от лат. contextus - сцепление, соединение, связь)
    - относительно законченный по смыслу отрывок текста или устной речи, в пределах которого наиболее точно и конкретно выявляется смысл и значение отдельного входящего в него слова, фразы, совокупности фраз. В логике и методологии научного познания К. понимается как отдельное рассуждение, фрагмент научной теории или теория в целом. В дополнение к основному семантическому значению, которым обладает слово или предложение, взятые сами по себе, К. придает им добавочное значение, более того, он может существенно изменить это основное значение слов и предложений. Поэтому в разных К. слова и предложения могут приобретать различные значения. Иногда К. целиком придает значение некоторому термину. В таких случаях говорят о контекстуальном определении термина (см.: Определение контекстуальное). Вопрос о контекстуальном значении научных терминов привлекает широкое внимание в методологии научного познания в связи с анализом развития научного знания, переходом терминов из старой теории в новую и изменением их значений при таких переходах.
КОНТЕКСТУАЛЬНОЕ ОПРЕДЕЛЕНИЕ, см.: Определение контекстуальное.
   КОНТРАДИКТОРНАЯ ПРОТИВОПОЛОЖНОСТЬ (от лат. contradictorius - противоречащий)
    - отношение между противоречащими друг другу суждениями. В традиционной логике противоречащими друг другу считаются общеутвердительные

[147]
и частноотрицательные суждения, имеющие один и тот же субъект и предикат ("Все цветы красивы" и "Некоторые цветы некрасивы"), а также общеотрицательные и частноутвердительные суждения ("Ни один цветок не красив" и "Некоторые цветы красивы").
   К. п. характеризуется следующими особенностями: 1) суждения не могут быть одновременно истинными; 2) они не могут быть одновременно ложными; 3) из двух противоречащих друг другу суждений одно непременно истинно, а другое ложно, третьего не дано. Последнее свойство контрадикторных суждений широко используется в процессах рассуждения и доказательства. Если нам удалось показать ложность некоторого суждения, то мы можем с уверенностью утверждать, что противоречащее ему суждение истинно, и наоборот.
   КОНТРАПОЗИЦИИ ЗАКОН

Страницы: «« « 10   11   12   13   14   15   16   17   18  19   20   21   22   23   24   25   26   27   28  » »»
2007-2013. Электронные книги - учебники. Ивин А.А., Словарь по логике